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ABSTRACT

The ability to provide advanced warning on tornadoes can be impacted by variations in storm mode. This

research evaluates 2 yr of National Weather Service (NWS) tornado warnings, verification reports, and

radar-derived convective modes to appraise the ability of the NWS to warn across a variety of convective

modes and environmental conditions. Several specific hypotheses are considered: (i) supercell morphol-

ogies are the easiest convective modes to warn for tornadoes and yield the greatest lead times, while tor-

nadoes frommore linear, nonsupercell convective modes, such as quasi-linear convective systems, are more

difficult to warn for; (ii) parameters such as tornado distance from radar, population density, and tornado

intensity (F scale) introduce significant and complex variability into warning statistics as a function of storm

mode; and (iii) tornadoes from stronger storms, as measured by their mesocyclone strength (when present),

convective available potential energy (CAPE), vertical wind shear, and significant tornado parameter

(STP) are easier to warn for than tornadoes from weaker systems. Results confirmed these hypotheses.

Supercell morphologies caused 97% of tornado fatalities, 96% of injuries, and 92% of damage during the

study period. Tornado warnings for supercells had a statistically higher probability of detection (POD) and

lead time than tornado warnings for nonsupercells; among supercell storms, tornadoes from supercells in

lines were slightly more difficult to warn for than tornadoes from discrete or clusters of supercells. F-scale

intensity and distance from radar had some impact on POD, with less impact on lead times. Higher me-

socyclone strength (when applicable), CAPE, wind shear, and STP values were associated with greater

tornado POD and lead times.

1. Introduction

Nationwide, National Weather Service (NWS) tor-

nado probability of detection (POD), false alarm ratio

(FAR), and lead time statistics have remained fairly

steady since 2003; about 75% of all tornadoes are warned

for in advance, with lead times of 13min (NOAA 2012).

Most importantly, a vast majority of the most deadly tor-

nadic storms now have very large lead times. However,

a careful review of the mean statistics shows a wide dis-

parity across regions, seasons, times of day, and population

densities (Brotzge and Erickson 2009, 2010). Further im-

provement in warning statistics will require more specific

attention to these variables.

Studies have long recognized a relationship between

the evolution and morphology of a convective system

and the resultant severe weather and subsequent dam-

age produced by it (Gallus et al. 2008; Duda and Gallus

2010; Thompson et al. 2012). Furthermore, as observing

technologies have advanced, additional means for clas-

sifying storms have been attained. For example, the ad-

vent of satellites has allowed for the identification of

mesoscale convective complexes (MCCs; Maddox 1980)
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from space, and the deployment of the Weather Sur-

veillance Radar-1988 Doppler (WSR-88D) network

permitted supercell structures to be more clearly defined

(e.g., Polger et al. 1994). Additional observing capabil-

ities such as dual polarization may allow for even greater

differentiation among storm modes.

Because of this strong relationship between storm

mode and severe weather, storm-type classification has

enhanced warning operations (Andra et al. 2002). New

data-mining techniques continue to be developed that

provide for the routine, real-time, automated identifi-

cation of storm type and convective mode (Beatty et al.

2009; Gagne et al. 2009; Lakshmanan and Smith 2009;

Lack and Fox 2012). The next step in moving this re-

search to operations is to better quantify how current

warning process statistics are impacted by variations in

convectivemode and environmental parameters. In other

words, what does the warning forecaster do with this new

storm mode information, and how does it change his/her

understanding of the storm and subsequent warning

procedures?

This research evaluates 2 yr of NWS tornado warn-

ings, verification reports, and radar-derived convective

modes across the continental United States (CONUS)

to evaluate the ability of the NWS to warn on tornadoes

across a variety of convective modes and environmental

conditions. Several specific hypotheses are considered:

(i) tornadoes from supercells, including discrete cells,

cell clusters, and cells in lines, are the easiest convective

modes to warn for and yield the greatest lead times, while

tornadoes from more linear nonsupercell convective

modes, such as quasi-linear convective systems (QLCS),

are more difficult to warn for; (ii) parameters such as

tornado distance from radar, population density, and

tornado intensity (F scale) introduce significant and

complex variability into tornado warning statistics as a

function of storm mode; and (iii) tornadoes associated

with stronger convective systems, as measured by their

mesocyclone strength (when present), convective avail-

able potential energy (CAPE), vertical wind shear, and

significant tornado parameter (STP), are easier to warn

for than weaker systems.

2. Data and methodology

Two independent datasets were combined to carry out

this study. First, a database of all tornado events and

NWS warnings issued between 2000 and 2004 was ob-

tained from the Performance Branch of the NWS. This

database contains information regarding tornado warn-

ing issuance and expiration dates and times, the NWS

Weather Forecast Office (WFO) that issued the warning,

the county or parish warned, and the corresponding

tornado reports (including F scale, damage, and casual-

ties). Estimates of county population density were pro-

vided by the Population Division of the U.S. Census

Bureau and were obtained from the 1 July 2000 pop-

ulation estimates (U.S. Census Bureau 2008). A total of

18763 tornado warnings and 7019 tornadoes were re-

corded during the 5-yr period. All data were county

based, meaning that if one tornado crossed three

counties, it was counted as three separate tornado events

and warnings. NWS tornado warning lead times and false

alarms have been analyzed using these data (Brotzge and

Erickson 2009, 2010; Brotzge et al. 2011).

A second database of tornado and significant severe

events between 2003 and 2011was compiled by the Storm

Prediction Center (SPC). The largest magnitude report

per hour was extracted from a Rapid Update Cycle

(RUC) model (Benjamin et al. 2004) analysis grid of

40-km horizontal grid spacing. In this case, individual

long-track tornadoes may have been segmented if their

paths crossed multiple grid boxes and/or hours. This da-

tabase yielded 10 753 tornadoes during the 9-yr period.

Next, the closest radar site to each event (within 230km)

was selected, and the associated archived level II (or level

III when appropriate) WSR-88D data from the National

Oceanic and Atmospheric Administration/National Cli-

matic Data Center (NOAA/NCDC; http://www.ncdc.

noaa.gov/nexradinv/) were downloaded for each severe

event. Each severe thunderstorm event was then manu-

ally classified into one of three broad storm morphology

categories based upon its reflectivity and velocity sig-

natures: (i) supercell, (ii) nonsupercell QLCS, and (iii)

‘‘disorganized’’, nonsupercell storms. Supercells were

subcategorized as either discrete cells, cells in clusters,

or cells in lines. All but five supercells were right-moving

(RM) supercells; data from the five left-moving supercells

were evaluated separately in this study due to the unusual

morphology and rarity of these events. Due to the rel-

atively small sample size, bow echoes were included

within the ‘‘nonsupercell QLCS’’ category. Additional

specifics on storm classification are described in Smith

et al. (2012). This dataset has been used in a series of

studies investigating the relationship between storm

morphology and storm environmental parameters and

prediction (Smith et al. 2012; Thompson et al. 2012;

Edwards et al. 2012).

These two datasets overlapped for only two years

(2003 and 2004) and so work for this manuscript was

limited to those two years. These two datasets were

cross-referenced, and only those tornado events that

were included in both datasets were used. The cross-

referencing procedure yielded a total of 2502 tornadoes,

with 9177 county-based tornado warnings issued by the

NWS during the 2 yr.
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For mesocyclone identification, the volumetric storm-

relative velocity data at the volume scan time immedi-

ately preceding the start of each tornado were used. To

be identified as a mesocyclone required a peak rotational

velocity $ 10m s21 and time continuity of identifiable

rotation for at least 10–15min (typically three consecu-

tive volume scans or more). Additionally, mesocyclones

required other reflectivity structures consistent with su-

percells (e.g., hook echoes).QLCSmesovorticeswere not

specifically identified or tracked; if a storm did not meet

the supercell criteria, there was no circulation strength

information recorded.

The environmental data in this study are the same

as those used in Thompson et al. (2012), which were

based on the SPC hourly mesoanalyses documented by

Bothwell et al. (2002). Specifically, the county warnings

were matched to the closest mesoanalysis grid point

(40-km horizontal grid with hourly temporal resolu-

tion), and all of the parameters were derived from the

National Centers Advanced Weather Interactive Pro-

cessing System Skew T Hodograph Analysis and Re-

search Program (NSHARP) sounding software. Mixed

layer CAPE (MLCAPE) was calculated for the lowest

100-mb mean parcel using the virtual temperature cor-

rection (Doswell and Rasmussen 1994). The bulk wind

differences (BWDs) were calculated over three different

layer depths: 0–1, 0–3, and 0–6 km AGL.

For warning operations, multivariate, composite pa-

rameters have been useful for discriminating between

tornadic and nontornadic storms. One such composite

parameter, the STP (Thompson et al. 2003), utilizes

MLCAPE, LCL heights based on the lowest 100-hPa

mean parcel, 0–1-km storm relative helicity, and 0–6-km

BWD, and was found by Thompson et al. (2003) to be a

reliable discriminator between significantly tornadic and

nontornadic supercells.

To evaluate the proposed hypotheses, tornado PODand

warning lead times were calculated for each storm as a

function of storm-type morphology, F scale, tornado dis-

tance from nearest radar (as measured from the latitude–

longitude at the beginning of the damage path), county

population density, associated mesocyclone strength

(if applicable), and related environmental parameters,

including the MLCAPE, vertical wind shear, and STP.

POD rates were expressed as a percentage. Tornado

warning lead times were calculated with and without

negative and zero lead times for comparison.

Some problems with tornado reporting may limit the

accuracy of this study. In general, weak (F0) tornadoes

often are underreported (Verbout et al. 2006). Howwell

tornado verification is done likely varies as a function

of several variables including population density,

storm spotter activity, and local weather forecast office

procedures. Poor storm verification can overinflate the

FAR and overestimate the POD (Smith 1999), and so

warning statistics may need to be evaluated with some

caution.

Parametric statistical testing was used throughout this

manuscript to evaluate differences between categories

and percentages of uncertainty (Wilks 1995). Estimates

of uncertainty were calculated as a function of sample

size with a 95% confidence interval. A two-tailed Student’s

t test was used to determine the significance between

categories.

3. Results

a. Warning statistics as a function of convective mode,
tornado intensity, radar range, and population
density

The first hypothesis tested was that supercell-based

tornadoes are the most likely to have greater lead times,

while QLCS tornadoes aremore difficult to warn for and

often have shorter lead times. As a first step in under-

standing the impacts from convection as a function of

its inherent morphology, all 2003 and 2004 tornado data

from the hourly, gridded SPC database were sorted by

storm type (Table 1). Tornado fatalities, injuries, and

damage were summed for each storm-type bin. A dis-

tinct difference is noted between supercells (discrete,

cluster, and in line) and QLCS and disorganized storm

structures. Over 97% of fatalities (84 out of 86) and

96% of all injuries occurred from supercell tornadoes.

The vast majority of the damage was also from super-

cell morphologies (92.9%). The operational and social

implications of these statistics are discussed in the con-

clusions section. However, results from this 2-yr (2003–

2004) sample are encouraging in that, if the proposed

hypothesis is correct that tornadoes from supercell mor-

phologies are easier to warn for, then we may conclude

that current warning operations are providing positive

lead-time tornado warnings on themost dangerous storm

types.

A review of Table 1 reveals surprising variability

among the supercell convective mode subcategories

(e.g., discrete cell, cell in cluster, cell in line). Most

intriguing, supercells in lines had much higher fatality

and injury rates per tornado than did any other group;

the damage per tornado was similar to that of discrete

supercells. Supercells in lines, while only 12.7% of all

classified supercells, had 25% of all supercell-related

tornado fatalities. The reasons for this may be multi-

faceted; for example, tornadoes from supercells in lines

are most frequent across the Deep South, where they

tend to occur from the fall through spring months and

peak during the spring, making them more dangerous
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than more typical, springtime discrete supercells in the

plains states (Smith et al. 2012). Supercells in lines also

are associated with less overall storm MLCAPE but

greater vertical wind shear than discrete supercells (as

discussed in section 3c). Finally and as shown in the next

section, tornadowarnings aremore difficult for supercells

in lines, with lower PODs and shorter lead times than all

other supercell types. In this limited sample, there was no

clear correlation between whether or not a tornado was

warned for and those tornadoes with fatalities. However,

extraneous factors such as time of day and storm visibility

may contribute to lower warning statistics and lower

sheltering rates. Brotzge and Erickson (2010) found that

the tornadoesmost likely to strike when the public is least

aware are also those tornadoes with the greatest chance

of not being warned for.

Next, the cross-referenced database was sorted by

storm type and whether or not each tornado was warned

for (Table 2, Fig. 1a). Here again, a distinct difference is

noted between supercell and nonsupercell morphol-

ogies. The PODs for supercells averaged between 80%

and 88% with a median lead time of 13–15min. The

POD for nonsupercell storms varied between 44% and

49% with an average of 45.8%, and with a median lead

time between 9 and 10min. Note that less than half of all

nonsupercell tornadoes were warned for. The average

tornado lead time for supercells (16.8min) was statis-

tically higher than those from nonsupercells (11.9min),

such as QLCS and disorganized storms, by an average

of 4.8min.

Five left-moving supercells were identified during the

2-yr study period. Of the tornadoes from these five

storms, four were rated F0 and one was rated F1. None

of the tornadoes produced any fatalities or injuries, and

only the F1 tornado produced damage (estimated at

$75,000). Two of the supercells were identified as dis-

crete, with the remaining three supercells identified as

supercells in clusters. One discrete left-moving supercell

had no NWS tornado warning, while the second discrete

storm had a late (22min) warning. Of the three super-

cells in clusters, two tornadoes had positive lead-time

warnings of 117 and 121min, while the third tornado

had no warning.

The QLCS category included classic QLCS storms

(223 events), bow echoes (31 events), and nonsupercell

cells in line (24 events). Overall, this category repre-

sented an excellent cross section ofQLCS tornado events

across the CONUS throughout the year. About 45.3%

of events occurred during spring (March–May), and

24.8% occurred during summer (June–August). Only

about 7.6% of QLCS tornadoes occurred during the

winter months (December–February). No bow-echo

or cells-in-line tornadoes were recorded during the

winter season. About 36.3%ofQLCS tornadoes occurred

across the upper Midwest (Iowa, Missouri, Wisconsin,

Michigan, Minnesota, Illinois, Indiana, Ohio, Kentucky,

Pennsylvania), and about a quarter (26.6%) occurred in

the South (South Carolina, Florida, Tennessee, Georgia,

Alabama, Mississippi, and Louisiana). Another 19.4%

occurred across the southern plains (Texas, Oklahoma,

and Arkansas).

One reason for the difference in lead times between

supercell and nonsupercell storms is that nonsupercell

storm tornado warnings contained a higher fraction of

zero and negative warnings. Negative lead times (when

the warning was issued after tornadogenesis) with non-

supercell morphologies occurred at over 3 times the rate

of supercells (17.8% vs 5.2%, respectively). The per-

centage of warnings with zero lead times was closer

TABLE 1. Total number of grid-hour tornado events and related fatalities, injuries, and damage as reported across the CONUS during

2003–04, categorized as a function of storm type.

Category Total No. Deaths Injuries

Cost of damage

(U.S. dollars)

Deaths per 100

tornadoes

Injuries per 100

tornadoes

Supercells, discrete 766 37 490 638.7 4.8 64.0

Supercells in cluster 925 26 392 350.5 2.8 42.4

Supercells in line 245 21 383 210.7 8.6 156.3

QLCS* 278 1 44 84.4 0.4 15.8

Disorganized 455 1 6 6.9 0.2 1.3

* Note: QLCS includes bow echoes for this and subsequent tables.

TABLE 2. POD (%) and median and mean lead time (min) as a

function of storm type. The 95% confidence interval is calculated

for the POD as a function of sample size.

Category

No.

warned

No. not

warned

POD

(%)

Median

lead

time

Avg

lead

time

Supercells, discrete 636 88 87.9 6 2.4 15 17.8

Supercells in

cluster

725 132 84.6 6 2.4 14 16.4

Supercells in line 186 45 80.5 6 5.1 13 15.0

QLCS 122 129 48.6 6 6.2 10 12.3

Disorganized 192 242 44.2 6 4.7 9 11.7
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across the two categories, with 4.2% of supercell warn-

ings compared with 5.4% of nonsupercell storms. When

zero and negative lead times are removed from the lead-

time calculations, the average supercell and nonsupercell

tornado warning lead times improved to 18.7 and

16.8min, respectively.

From this comparison, it is shown that tornadowarning

POD and lead time varied significantly as a function of

FIG. 1. POD (%) and mean lead time (min) estimated as a function of (a) storm mode. The POD and mean lead

time estimated as a function of storm mode and (b) F scale, (c) distance from radar (km), and (d) county population

density (persons per square kilometer).

TABLE 3. As in Table 2, but sorted by F scale.

Variable Category No. warned No. not warned POD (%) Median lead time Avg lead time

F scale: F0, F1 1624 616 72.5 6 1.9 14 16.1

Supercells, discrete 528 84 86.3 6 2.7 16 18.1

Supercells, cluster 638 129 83.2 6 2.7 14 16.6

Supercells in line 153 40 79.3 6 5.7 13 15.6

QLCS 114 122 48.3 6 6.4 10 12.3

Disorganized 191 241 44.2 6 4.7 9 11.7

F scale $ F2 237 20 92.2 6 3.3 13 14.9

Supercells, discrete 108 4 96.4 6 3.5 15 16.1

Supercells, cluster 87 3 96.7 6 3.7 12 14.8

Supercells in line 33 5 86.8 6 10.7 10 12.3

QLCS 8 7 53.3 6 25.3 3 12.9

Disorganized 1 1 50.0 6 50.0 0 0.0
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storm type. Differences in storm type caused average

tornado PODs to vary by as much as 40% and lead times

to vary by as much as 6min.

The second hypothesis stated that radar distance,

population density, and tornado intensity impact tor-

nado warning statistics as a function of stormmode. The

relationship between tornado warning statistics and

these additional factors was examined as sorted by storm

type. The data first were separated according to their

F scale, with weak tornadoes (F0, F1) compared against

significant tornadoes, those rated F2 or greater (Table 3,

Fig. 1b). Results indicated that the more intense torna-

does tended to have a statistically higher POD (92.2%)

than weaker tornadoes (72.5%) at the 95% confidence

level. This result is expected as weaker tornadoes often

are short lived and transient. The POD was significantly

higher for $ F2 tornadoes for discrete and cluster su-

percells; sample sizes were too small to draw conclusions

from other storm-type categories. While warning lead

times appeared to be shorter for the stronger tornadoes

than for the weaker ones, these differences were not

statistically significant. The numbers of negative and

zero lead times were equally apportioned across weak

and significant tornado categories.

Next, the data were sorted by the distance of the

tornado from the nearest WSR-88D site and storm type

(Table 4, Fig. 1c). Data collected within 100km of a radar

site had a statistically significant higher POD (78.1%)

than data from those storms located farther than 100 km

away (69.3%).Most category sample sizes were too small

to yield significance; only QLCS showed a significant

(and large) drop with radar distance. Overall, more lin-

early oriented storm morphologies (supercells in lines

and QLCS) had a much steeper drop in POD with dis-

tance than did other morphologies; we speculate that

vortices associated with linear-based storms were shal-

lower and had smaller circulations than supercell-based

storms, and so were more difficult to analyze far from

radar. The POD of QLCS storms nearly doubled as the

radar range decreased.

Tornado lead times were significantly greater (using a

Student’s t test at a 95% confidence interval) by 1.5min

for storms at distances. 100 kmwhen compared to data

collected within 100 km of radar. However, when zero

and negative lead times were removed from the data,

these differences were no longer significant. There were

4% more zero and negative lead times for warnings

within 100 km of radar than in data collected beyond

TABLE 4. As in Table 2, but sorted by distance from nearest radar.

Variable Category No. warned No. not warned POD (%) Median lead time Avg lead time

Range , 100 km 1156 324 78.1 6 2.1 13 15.4

Supercells, discrete 404 45 90.0 6 2.8 15 17.4

Supercells, cluster 422 81 83.9 6 3.2 13 15.5

Supercells in line 136 25 84.5 6 5.6 13 15.0

QLCS 89 59 60.1 6 7.9 8 11.7

Disorganized 105 114 47.9 6 12.2 10 11.2

Range $ 100 km 705 312 69.3 6 2.8 14 16.9

Supercells, discrete 232 43 84.4 6 4.3 15.5 18.5

Supercells, cluster 303 51 85.6 6 3.7 14 17.6

Supercells in line 50 20 71.4 6 10.6 12.5 15.2

QLCS 33 70 32.0 6 9.0 12 13.9

Disorganized 87 128 40.5 6 6.6 8 12.3

TABLE 5. As in Table 2, but sorted by county population density (persons per square kilometer).

Variable Category No. warned No. not warned POD (%) Median lead time Avg lead time

Population density , 100 1644 523 75.9 6 1.8 14 16.2

Supercells, discrete 583 79 88.1 6 2.5 15 17.8

Supercells, cluster 651 116 84.9 6 2.5 14 16.6

Supercells in line 154 38 80.2 6 5.6 13 15.2

QLCS 98 103 48.8 6 6.9 9.5 12.4

Disorganized 158 187 45.8 6 5.3 9.5 12.1

Population density $ 100 217 113 65.8 6 5.1 12 14.0

Supercells, discrete 53 9 85.5 6 8.8 16 17.1

Supercells, cluster 74 16 82.2 6 7.9 11 14.3

Supercells in line 32 7 82.1 6 12.0 12.5 14.1

QLCS 24 26 48.0 6 13.9 11 12.0

Disorganized 34 55 38.2 6 26.4 4 9.6
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100 km from radar, leading to overall lower mean lead

times in the short-range data. Average lead times for all

storm categories increased with radar distance, but these

were not statistically significant, likely due to sample

size.

Finally, POD and lead time were compared as a func-

tion of county population density and storm type

(Table 5, Fig. 1d). Storms in more rural regions (pop-

ulation density , 100 persons per square kilometer) had

a significantly higher POD (75.9%) than storms in more

urban areas (population density$ 100 persons per square

kilometer; 65.8%). Of the individual storm types, only

supercells in lines had a higher POD in more densely

populated counties. Similarly, average lead times were

statistically higher in less populated regions than those

in higher population density areas (16.2 vs 14.0min).

However, the more urban areas had a 3% greater pro-

portion of zero and negative lead timewarnings, and once

these were removed from the dataset, the difference in

the average lead time between rural and urban areas was

insignificant.

In summary, tornado warning performance was im-

pacted significantly by factors including storm type,

tornado intensity, radar distance, and county population

FIG. 2. POD (%) and average lead time (min) calculated as a function of F scale, distance

from radar, county population density, and storm type. Category sample sizes are listed in

parentheses. Right-moving supercells are abbreviated RM.
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density. Overall, PODs were significantly higher for$ F2

tornadoes, storms within 100 km of radar, and for storms

in counties with rural (,100 persons per square kilo-

meter) population densities. These impacts varied as a

function of storm type. Average lead times were signifi-

cantly higher for storms far from radar and in rural areas.

However, these differences were insignificant once

negative and zero lead-time warnings were removed. In

other words, onemay surmise that more real-time spotter

reports from more densely populated regions (often

within 100km of radar) led to greater numbers of nega-

tive and zero lead-time warnings, warnings that were

likely missed in more rural areas (Brotzge and Erickson

2010).

To better understand the specific, collective impacts

of storm type, F scale, radar range, and population den-

sity, the POD and average lead times were calculated for

each of 40 categories (5 storm type, 2 F scale, 2 radar

distance, and 2 county population categories) (Fig. 2).

Of particular significance is the high (.90%) POD for

F2 or greater tornadoes within 100 km of radar, com-

pared with the much lower PODs for weak (F0, F1)

tornadoes located $100 km from radar. Similar trends

in warning lead time are less coherent.

TABLE 6. POD (%) and mean lead time (min) as a function of

mesocyclone strength.

Category

No.

warned

No. not

warned

POD

(%)

Median

lead

time

Avg

lead

time

None 311 369 45.7 6 3.7 9 11.9

Weak 544 162 77.1 6 3.1 14 16.4

Moderate 415 55 88.3 6 2.9 13 15.5

Strong 591 50 92.2 6 2.1 16 18.0

FIG. 3. POD (%) and mean lead time (min) estimated as a function of (a) mesocyclone strength. The POD and

mean lead time estimated as a function of mesocyclone strength and (b) F scale, (c) distance from radar (km), and

(d) county population density (persons km22).
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b. Warning statistics as a function of mesocyclone
strength

Our third hypothesis is that tornado detection and

warning are much easier for storms having strong meso-

cyclones than for storms having a weak (or no) mesocy-

clone. To begin to test this hypothesis, the mesocyclone

for each tornadic supercell was ratedmanually, as derived

from radar velocities in the volume sample preceding

tornado events (in many cases, tornadogenesis), as weak,

moderate, or strong, based on the mesocyclone no-

mograms produced by the Warning Decision Training

Branch of the NWS (Andra 1997). The warning sta-

tistics were calculated then for the subset of tornadoes

within each category (Table 6, Fig. 3a).While no parent

circulations were identified with nonsupercell categories

(i.e., QLCS and disorganized storms), tornado warning

statistics for nonsupercell categories were included for

comparison (labeled as ‘‘None’’ in Table 6).

As hypothesized, the tornadoes with the strongest

mesocyclones had the highest PODs and median and

average lead times. Tornadoes associated with strong to

moderate mesocyclones had significantly higher PODs

(92.2% and 88.3%, respectively) than tornadoes with

weak or no mesocyclones (77.1% and 45.7%, respec-

tively). Those tornadoes associated with strong mesocy-

clones also had a significantly greater average lead time

(18.0min) when compared with those from moderate

mesocyclones (15.5min). However, there were no signi-

ficant differences in the warning statistics between the

weak and moderate mesocyclone strength categories.

Tornadoes not associated with a distinct mesocyclone

had much lower PODs and warning lead times.

Tornado warning statistics, calculated as a function

of mesocyclone strength and storm type, are shown in

Table 7. For tornadic nonsupercell storms, POD rates

and warning lead times were quite low when compared

to supercell statistics. POD rates improved significantly

when mesocyclones were observed, with POD rates

jumping 30%–40%. POD rates improved for all super-

cell categories as a function of themesocyclone strength;

the stronger themesocyclone, the higher the POD. Lead

times also improved as a general function of the meso-

cyclone strength. Overall, whether or not a mesocyclone

TABLE 7. POD (%) and median and mean lead time (min) as a function of mesocyclone strength and storm type.

Category Variable No. warned No. not warned POD (%) Median lead time Avg lead time

None reported

QLCS 122 129 48.6 6 6.2 10 12.3

Disorganized 189 240 44.1 6 4.7 9 11.7

Weak

Supercells, discrete 220 52 80.9 6 4.7 15 16.6

Supercells, cluster 270 85 76.1 6 4.4 13 15.9

Supercells in line 53 23 69.7 6 10.3 17 18.0

Moderate

Supercells, discrete 170 22 88.5 6 4.5 14 16.8

Supercells, cluster 191 22 89.7 6 4.1 13 15.4

Supercells in line 53 11 82.8 6 9.3 10 11.9

Strong

Supercells, discrete 246 14 94.6 6 2.8 18 19.5

Supercells, cluster 264 25 91.3 6 3.3 15.5 17.4

Supercells in line 80 11 87.9 6 6.7 11.5 15.2

TABLE 8. As in Table 6, but sorted by F scale.

Variable Category No. warned No. not warned POD (%) Median lead time Avg lead time

F scale (F0, F1)

None 306 362 45.8 6 3.8 9 11.9

Weak 521 158 76.7 6 3.2 14 16.5

Moderate 374 52 87.8 6 3.1 13.5 16.1

Strong 427 45 90.5 6 2.7 16 18.6

F scale $ 2

None 9 8 52.9 6 23.7 1 11.4

Weak 23 4 85.2 6 13.4 16 15.0

Moderate 41 3 93.2 6 7.5 7 10.2

Strong 164 5 97.0 6 2.6 14 16.3
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was detected had a dramatic impact on POD statistics

and some impact on warning lead time.

As in section 3a, the data were sorted by mesocyclone

strength and F scale, distance from the nearest radar,

and county population density (Figs. 3b–d). Once sorted

by F scale, the stronger tornadoes had an overall higher

POD than weaker ones, as expected, but with lower

average lead times as noted previously (Table 8, Fig. 3b).

Of note, however, was that those significant tornadoes

with strong mesocyclones had an overall 97.0% POD

with only 5 tornadoes not warned for from a total 169

tornado events. Contrarily, the POD for weak tornadoes

with weakmesocyclones was 76.7%,much lower than the

significant tornadoes and strong mesocyclone events,

but still relatively high compared to nonsupercell storm

morphologies.

Categorized by distance from radar, those tornadoes

within 100 km of radar with moderate to strong meso-

cyclones have slightly higher PODs than those events.
100 km from radar, while weakmesocyclone events have

a nearly equal to slightly lower PODs (Fig. 3c). When

sorted by population density, very little difference

between the categories was noted, with slightly greater

mean lead times for less densely populated counties

(Fig. 3d).

c. Warning statistics as a function of environmental
parameters

Variations in stormmorphology develop in association

with near-storm environmental parameters. Because

warning performance varies as a function of morphology,

warning performance can be expected to vary in a similar

way to the environmental variables associated with the

tornadic events. To test this idea, warning performance

was calculated as a function of MLCAPE, vertical wind

shear, and the derived significant tornado parameter,

based on the Thompson et al. (2012) dataset.

1) MLCAPE AND VERTICAL WIND SHEAR

First,MLCAPEand vertical wind shear estimateswere

calculated for each storm type (Table 9, Figs. 4a and 5a).

For this work, the BWDwas calculated as a proxy for the

vertical wind shear. MLCAPE was highest for discrete

and cluster supercells, while low-level (0–1km) BWDwas

highest for more linear storm morphologies. The ‘‘disor-

ganized’’ storm category had the lowest MLCAPEs and

BWDs at all levels.

Tornado warning performance was examined directly

as a function of environmental MLCAPE (Table 10,

Fig. 4b). PODwas found to vary strongly withMLCAPE;

for very low (#250 J kg21) MLCAPE events, the POD

was just over 50%, but the POD jumped to over 86% for

tornadoes associated with MLCAPE $ 2000 J kg21.

Warning lead times generally increased with increased

TABLE 9. Average values of MLCAPE (J kg21), BWD (0–1, 0–3,

and 0–6 km; m s21), and STP estimated as a function of storm type.

Category MLCAPE BWD1 BWD3 BWD6 STP

Supercells, discrete 1612 11.6 17.6 24.3 2.85

Supercells, cluster 1588 12.2 17.3 23.9 2.71

Supercells in line 1193 15.0 19.8 26.4 3.21

QLCS 1190 13.6 17.2 23.4 2.00

Disorganized 966 7.7 10.9 15.0 0.59

FIG. 4. (a) Box plots showing the distribution of MLCAPE as a function of stormmode. (b) POD (%) and mean lead

time (min) estimated as a function of MLCAPE (J kg21).
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MLCAPE, with lead times significantly greater for

MLCAPE $ 2000 J kg21.

Next, tornado warning performance was evaluated

as a function of storm type and MLCAPE (Table 11).

Results were mixed. For discrete and cluster supercells,

PODs and lead times generally increasedwithMLCAPE.

For supercells in lines, PODs generally increased with

MLCAPE . 250 J kg21, but appeared to have little im-

pact on lead times. For QLCS, PODs remained relatively

low (;36%–56%) regardless of MLCAPE value, but

mean lead times for the largest MLCAPE storms were

significantly higher. Sample sizes for supercells in lines,

QLCS, and disorganized cases were too small to infer sta-

tistical significance among subgroups. Overall, MLCAPE

was a poor discriminator of tornado POD and lead time

for most storm types.

In a similar manner, the values of BWD also were es-

timated as a function of storm type (Fig. 5a). More line-

arly oriented storm morphologies (supercells in lines,

QLCS) had the highest low-level (0–1km) BWDs, while

disorganized storms had the lowest values. Warning

performance also was evaluated as a function of BWD.

POD and warning lead times were estimated as a func-

tion of 0–1, 0–3, and 0–6 km BWD (Table 12, Figs. 5b–d).

In general, POD and lead time increased with BWD.

For 0–1-km BWD, POD and lead time peaked at

15–20ms21 and remained steady at higher speeds. For

0–3- and 0–6-kmBWDs, PODs peaked at 25 and 30ms21,

TABLE 10. POD (%) and median and mean lead time (min) as a function of mean layer MLCAPE (J kg21).

Category No. warned No. not warned POD (%) Median lead time Avg lead time

0–250 128 124 50.8 6 6.1 11.5 14.4

250–500 166 90 64.8 6 5.8 11 13.1

500–1000 410 142 74.3 6 3.6 13 14.1

1000–2000 535 186 74.2 6 3.2 13 15.1

$2000 605 92 86.8 6 2.5 17 18.9

TABLE 11. As in Table 10, but sorted by storm type.

Variable Category MLCAPE (J kg21) No. warned No. not warned POD (%) Median lead time Avg lead time

Supercells, discrete

0–250 32 14 69.6 6 13.3 20 20.1

250–500 45 11 80.4 6 10.4 11 14.0

500–1000 139 16 89.7 6 4.8 14 15.5

1000–2000 169 30 84.9 6 5.0 15 16.6

$2000 245 17 93.5 6 3.0 17 20.2

Supercells, cluster

0–250 37 22 62.7 6 12.3 10 13.5

250–500 50 21 70.4 6 10.6 11 14.6

500–1000 147 28 84.0 6 5.4 13 14.2

1000–2000 220 33 87.0 6 4.1 12 14.9

$2000 266 26 91.1 6 3.3 17 19.2

Supercells in line

0–250 22 3 88.0 6 12.7 10 11.9

250–500 22 8 73.3 6 15.8 13 15.2

500–1000 53 15 77.9 6 9.9 13 13.5

1000–2000 50 14 78.1 6 10.1 14.5 17.9

$2000 36 5 87.8 6 10.0 10 14.1

QLCS

0–250 14 24 36.8 6 15.3 10 11.8

250–500 14 18 43.8 6 17.2 9.5 11.4

500–1000 33 26 55.9 6 12.7 7 11.2

1000–2000 38 34 52.8 6 11.5 8.5 10.5

$2000 23 27 46.0 6 13.8 13 17.7

Disorganized

0–250 23 61 27.4 6 9.5 6 12.0

250–500 35 32 52.2 6 12.0 7 9.0

500–1000 38 57 40.0 6 9.9 10 12.2

1000–2000 58 75 43.6 6 8.4 8.5 12.3

$2000 35 17 67.3 6 12.8 13 12.5
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respectively. Warning lead times dropped slightly at

higher BWDs.

In addition, the POD and mean lead time values were

muchmore sensitive to the 0–6-kmBWD than the 0–1-km

BWD. For the 0–1-km BWD parameter, PODs ranged

between 69.9% and 79.9% with lead times between 14.1

and 16.8min. For the 0–6-km BWD, PODs ranged be-

tween 49.4% and 83.6% with mean lead times between

11.7 and 17.5min.

Tornado POD and lead time also were examined as

a function of 0–6-km BWD and storm mode (Table 13).

In general, sample sizes were too small to draw statisti-

cally significant conclusions. However, for discrete and

cluster supercells, PODs were much lower at low BWDs

(,15m s21). Lead times were several minutes lower.

PODs rose for supercells in lines with BWD$ 30m s21.

Low shear values were associated most frequently with

disorganized storms that had the lowest tornado POD

and lead time.

2) SIGNIFICANT TORNADO PARAMETER

In general, tornado warning statistics improved as-

ymptotically with increasing STP (Table 14, Fig. 6). The

POD increased rapidly until the STP $ 4, at which

POD$ 90%. This composite reflects previous results that

stronger tornadoes, often associated with stronger buoy-

ancy and vertical wind shear, are much easier to identify

and warn for. Similarly, mean warning lead times im-

proved asymptotically with increasing STP. Mean lead

times are over 6min greater for large STP values ($4)

when compared with the lowest STP storms (,0.5).

4. Discussion and summary

Three hypotheses relating convective mode and envi-

ronmental parameters to NWS tornado warning statistics

were confirmed. First, tornadoes from supercell storms

were much easier to warn for in terms of POD and lead

time than tornadoes from either QLCS or more

FIG. 5. (a)Mean bulkwind difference (m s21) is plotted as a function of storm type. The POD (%) andmean lead time

(min) estimated as a function of (b) 0–1-, (c) 0–3-, and (d) 0–6-km BWD (m s21).
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disorganized, nonsupercell storms. Second, storm pa-

rameters including F-scale intensity and radar distance

had a quantitatively significant impact on tornado POD

and lead time, but varied as a function of storm mor-

phology. Third, the stronger, more intense storms, as

determined by mesocyclone strength, MLCAPE, and

vertical wind shear, had much higher tornado PODs and

lead times than did weaker storms. Specific results from

this work are listed:

d An overwhelming majority of tornado fatalities (97%),

injuries (96%), and damage (92%) occurred from

supercells. Supercells in lines had nearly double the

fatality rate and over 2.5 times the injury rate per

tornado of other supercell storm morphologies.
d The average tornado POD for supercells was 85.4%,

compared to 45.8% for nonsupercells. The mean tor-

nado lead time for supercells was 16.8min, compared to

11.9min for nonsupercells.
d Tornadoes rated$ F2 had a POD of 92.2% compared

to a POD of 72.5% for weaker (F0, F1) tornadoes.

PODs improved for all storm types with increasing

F scale. However, mean lead times were statistically

unchanged.
d Tornadoes within 100 km of radar had a POD of

78.1% compared to a POD of 69.3% for tornadoes

observed $ 100 km from radar. Most storm modes

showed improved PODs with the closer radar range.

More linear-oriented storm morphologies showed the

steepest declines in POD with distance, likely due to

shallower systems and smaller circulations. Mean lead

times increased slightly with increasing radar distance

due to fewer zero and negative lead times events.

d Tornadoes in more rural regions had a POD of 75.9%

compared to 65.8% inmore urban regions (population

density $ 100 persons km22). Most storm types had

only a slightly higher POD in rural areas. Mean lead

times were slightly lower in more densely populated

regions due to more negative and zero lead time

events.
d Tornadoes with strong mesocyclones had a POD of

92.2% and lead time of 18.0min compared with a POD

of 45.7% and lead time of 11.9min for tornadoes with

no mesocyclone present. POD increased with mesocy-

clone intensity for each storm type; however, lead time

improvement varied with storm type, with some gen-

eral improvement in lead time with mesocyclone

strength.
d The storm mesocyclone strength and tornado F-scale

intensity had an additive impact on tornado POD

rates, with less impact on lead time. Tornadoes with an

F scale $ 2 and a strong mesocyclone had a POD $

97% and mean lead time over 16min whereas weak

(F0, F1) tornadoes with nomesocyclones had a POD,
50% and mean lead time , 12min.

d In general, tornado PODand lead time varied strongly

withMLCAPE.ForMLCAPEbetween0and250Jkg21,

POD was 50.8% with a mean lead time of 14.4min.

For MLCAPE $ 2000 J kg21, POD was 86.8% with

a mean lead time of 18.9min. However, results were

less clear when subcategorized by storm type. POD

and lead time generally increased with MLCAPE for

discrete and cluster supercells, but results were less

clear for other storm morphologies, partially due to

the small sample sizes.

TABLE 12. POD (%) and median and mean lead time (min) as a function of BWD (ms21).

Variable Category No. warned No. not warned POD (%) Median lead time Avg lead time

0–1-km BWD

0–5 285 123 69.9 6 4.4 11 14.1

5–10 346 143 70.8 6 4.0 13 15.5

10–15 454 168 73.0 6 3.5 15 16.7

15–20 417 105 79.9 6 3.4 15 16.8

$20 343 98 77.8 6 3.9 13 15.6

0–3-km BWD

0–10 272 140 66.0 6 4.6 12 14.8

10–15 358 138 72.2 6 3.9 13 15.6

15–20 449 177 71.7 6 3.5 13 15.6

20–25 402 105 79.3 6 3.5 14 17.0

$25 364 77 82.5 6 3.5 14 16.1

0–6-km BWD

0–15 203 208 49.4 6 4.8 9 11.7

15–20 365 118 75.6 6 3.8 13 14.9

20–25 509 129 79.8 6 3.1 14 16.5

25–30 389 104 78.9 6 3.6 15 17.5

$30 382 75 83.6 6 3.4 14 16.6
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d Vertical wind shear (bulk wind difference) had mod-

erate impact on tornado POD and lead times. POD

and lead time generally improved with increased

BWD; for example, tornadoes from discrete supercells

with a 0–6-km BWD , 25m s21 had a POD of 75.6%

and mean lead time of 14.4min compared with a POD

of 90.5% and lead time of 17.9min for 0–6-km BWD$

40ms21. This highlights weak shear environments as

being more difficult when issuing successful tornado

warnings.
d STP was a reliable indicator of tornado POD and lead

time. For STPvalues, 0.5, PODwas 58.6%with amean

lead time of 12.5min. For STP values $ 8, POD was

94.9% with an average lead time of 18.6min.

This manuscript has demonstrated a significant rela-

tionship between warning statistics and stormmode, and

confirms what operational forecasters have known an-

ecdotally for some time. Results point to lower tornado

detection rates and shorter lead times associated with

nonsupercell storms, weaker tornadic systems, and storms

far from radar and in higher populated areas. Real-time

access to storm-mode classification and improved low-

level analyses may contribute to greater anticipation of

expected tornado impacts. Additional low-level radar

coverage, such as could be provided by gap-filling ra-

dars (e.g., McLaughlin et al. 2009), could likely im-

prove detection of many of these weaker, nonsupercell

tornadoes.

Yet as data from this 2-yr study have also shown, those

tornadoes with the lowest PODs and lead times are those

events least likely to cause damage or injury. Supercells

remain the most dangerous storm mode and yet are the

most successfully warned for with the longest lead times.

TABLE 13. POD (%) and median and mean lead time (min) as a function of 0–6-km BWD (m s21) and storm type.

Variable Category No. warned No. not warned POD (%) Median lead time Avg lead time

Supercells, discrete

0–15 34 11 75.6 6 12.5 12.5 14.4

15–20 115 25 82.1 6 6.4 15 16.0

20–25 202 21 90.6 6 3.8 15 18.0

25–30 149 17 89.8 6 4.6 18 19.4

$30 134 14 90.5 6 4.7 15 17.9

Supercells, cluster

0–15 52 20 72.2 6 10.4 10.5 12.1

15–20 151 25 85.8 6 5.2 13 15.7

20–25 213 38 84.9 6 4.4 14 16.4

25–30 155 27 85.2 6 5.2 15 17.3

$30 145 19 88.4 6 4.9 14 17.1

Supercells in line

0–15 11 5 68.8 6 22.7 13 16.8

15–20 29 8 78.4 6 13.3 18 19.0

20–25 40 13 75.5 6 11.6 9 10.7

25–30 32 10 76.2 6 12.9 14 16.4

$30 73 9 89.0 6 6.8 14 15.1

QLCS

0–15 12 23 34.3 6 15.7 17 14.5

15–20 25 26 49.0 6 13.7 6 10.4

20–25 25 28 47.2 6 13.4 10 14.2

25–30 37 28 56.9 6 12.0 11 13.1

$30 23 24 48.9 6 14.3 9 9.9

Disorganized

0–15 94 149 38.7 6 6.1 5 9.7

15–20 47 34 58.0 6 10.8 12 10.7

20–25 27 29 48.2 6 13.1 15 16.6

25–30 16 22 42.1 6 15.7 16 15.8

$30 8 8 50.0 6 24.5 6.5 17.9

TABLE 14. POD (%) and median and mean lead time (min)

as a function of STP.

Category

No.

warned

No. not

warned

POD

(%)

Median

lead

time

Avg

lead

time

0–0.5 360 254 58.6 6 3.9 10 12.5

0.5–1 221 89 71.3 6 5.0 12 15.6

1–2 352 83 80.9 6 3.7 15 16.9

2–4 378 79 82.7 6 3.5 14 16.6

4–6 175 18 90.7 6 4.1 16 18.2

6–8 108 11 90.8 6 5.2 15 18.0

$8 150 8 94.9 6 3.4 16 18.6
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Nonsupercell storms cause few fatalities, injuries, or

damage and yet have relatively poor PODs and warning

lead times. This is good news, as large violent tornadoes

typically are warned tens of minutes in advance, whereas

weak, less-threatening tornadoes are the events most

likely to bemissed. However, these statistics highlight a

growing disconnect between gains in warning statistical

measures and improved public safety. Simmons and

Sutter (2008) found warning lead times. 15min had no

additional impact on reducing fatality rates.

Large reductions in storm casualties will likely not

come from increased tornado POD or warning lead

time, as the largest gains in POD or lead time will likely

be in the warning of small, weak tornadoes that are

responsible for relatively few casualties. Public dis-

course must be careful to note this limitation and rec-

ognize that further improvements in POD or lead time

cannot promise a safer public. Furthermore, any efforts

to increase PODs and lead times for the normally less-

impactful, nonsupercell tornadoes should consider un-

intended consequences on supercell tornado warning

credibility (i.e., likely increases in FAR for overall tor-

nado warnings).
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