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Abstract: Radar quantitative precipitation estimation (QPE) is one of the primary tasks of weather
radars. The QPE quality was substantially improved after polarimetric upgrade of the radars. This
study provides an overview of existing polarimetric methodologies for rain and snow estimation
and their operational implementation. The variability of drop size distributions (DSDs) is a primary
factor affecting the quality of rainfall estimation and its impact on the performance of various radar
rainfall relations at S, C, and X microwave frequency bands is one of the focuses of this review. The
radar rainfall estimation algorithms based on the use of specific attenuation A and specific differential
phase KDP are the most efficient. Their brief description is presented and possible ways for their
further optimization are discussed. Polarimetric techniques for the vertical profile of reflectivity (VPR)
correction at longer distances from the radar are also summarized. Radar quantification of snow is
particularly challenging and it is demonstrated that polarimetric methods for snow measurements
show good promise. Finally, the article presents a summary of the latest operational radar QPE
products available in the US by integration of the information from the WSR-88D radars via the
Multi-Radar Multi-Sensor (MRMS) platform.

Keywords: polarimetric radars; rain and snow estimation; drop size distribution variability; vertical
profile of reflectivity (VPR) correction; Multi-Radar Multi-Sensor (MRMS) platform

1. Introduction

Quantitative precipitation estimation (QPE) is one of the primary tasks of weather
radars. It is hard to overestimate a societal impact of accurate precipitation measurements
in the context of global warming with the rapidly increasing frequency of devastating
flash flood events, particularly those associated with landfalling hurricanes and typhoons
causing massive damage to property and infrastructure as well as human fatalities. While
accurate precipitation measurements are critical for storm warnings and hydrology, they
are also important for assimilation into the NWP models and optimization of their micro-
physical parameterization.

Traditional radar methods of rain and snow estimation were based on the use of a
single radar variable, radar reflectivity factor Z. Significant progress in radar QPE was
achieved during last 2–3 decades with introduction of polarimetric weather radars which
are capable of complementing measurements of Z with additional radar variables such as
differential reflectivity ZDR, specific differential phase KDP, and most recently, specific atten-
uation A. The advantages of polarimetric radar measurements for rainfall estimation were
demonstrated in a number of research studies back in the nineties and early 2000s [1–7]. It
was shown that the use of multiple radar variables helps to reduce the QPE uncertainty
caused by the drop size distribution (DSD) variability whereas the utilization of a specific
differential phase KDP allows to address the issues of radar miscalibration, attenuation, and
partial beam blockage.
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In the 2000s, the polarimetric technology and methodology for rainfall estimation
matured to the point to justify their operational implementation on the nationwide weather
radar networks. The US spearheaded this effort after successful completion of the Joint
Polarization Experiment (JPOLE) demonstration project [8] which culminated in the polari-
metric upgrade of all WSR-88D radars in 2013. Another important step was integration of
the information from the WSR-88D radars using the Multi-Radar Multi-Sensor (MRMS)
platform that combines the polarimetric radar data with atmospheric environment data,
satellite data, and lightning and rain gauge observations to generate a suite of severe
weather and QPE products [9].

A comprehensive overview of the modern polarimetric radar methods for rain and
snow estimation can be found in the recent monograph of Ryzhkov and Zrnic [10] (their
Chapter 10). The purpose of this review paper is to briefly summarize the QPE method-
ologies described in [10] and to provide an update on the recent progress in polarimetric
radar QPE and its operational implementation after the monograph was published. Al-
though we attempted to provide a summary of all relevant research around the globe, the
primary focus of this review is on the last decade developments in the US. In Section 2,
we describe the evolution of polarimetric methods for rainfall estimation at the distances
where the radar sampling volume is below the melting layer (ML) and is primarily filled
with raindrops occasionally mixed with graupel and hail. The impact of the DSD variability
on the performance of various rainfall relations is discussed along with the comparative
analysis of their performance in rain of different microphysical types and intensity in the S,
C, and X frequency bands. The emphasis is on the most recent rainfall estimation algorithm
operationally implemented on the WSR-88D network based on the combined use of specific
attenuation A, KDP, and Z and its further optimization. At longer distances, where the
radar samples the hydrometeors within the melting layer and above, the methods for the
vertical reflectivity profile (VPR) correction are traditionally utilized. A description of the
latest polarimetric VPR techniques is also presented in Section 2.

Radar measurements of snow are challenging due to tremendous variability of snow
particle size distributions, their density, water content, shape, and orientation. Until recently,
radar methods for estimation of snowfall rate or snow water equivalent (S or SWE) utilize
multiple power-law relations between S and radar reflectivity Z. These relations exhibit
roughly an order of magnitude difference in the estimates of snowfall rate for the same Z.
Polarimetric methods for snow measurements have been introduced in the last few years
and their description and performance results are provided and discussed in Section 3.

Section 4 contains a brief overview of the MRMS system for integration of the po-
larimetric radar data across the US and generation of various QPE products which are
evaluated in real time with a multitude of surface rain gauges.

2. Rainfall Estimation
2.1. Polarimetric Rainfall Relations

The variability of drop size distributions is a primary source of uncertainty in the radar
rainfall estimation. Because radar reflectivity Z is the 6th moment of DSD and rain rate R is
approximately proportional to its 3.67th moment [10], the magnitude of Z is determined
by the contribution of a few largest drops in the raindrop size spectrum whereas a bulk
of smaller drops dominate rain rate. This dictated the use of multiple R(Z) relations for
single-polarization radars. The choice of a particular relation depends on the type of rain
(convective vs. stratiform, tropical vs. continental, etc.), season, and climate region. For
example, the following five R(Z) relations are utilized on the US network of WSR-88Ds:

Z = 300R1.4 in convective rain,
Z = 250R1.2 in tropical rain,
Z = 200R1.6 in summer stratiform rain,
Z = 130R2.0 in winter stratiform rain (eastern US),
Z = 75R2.0 in winter stratiform rain (western US).

(1)
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The choice of a particular R(Z) relation is at the discretion of a radar operator/meteorologist
and there are no objective criteria for choosing an optimal one for a provided time and location.

Historically, the first polarimetric rainfall relations used a combination of Z and
ZDR [11]. Utilization of ZDR, a polarimetric radar variable that depends on the median
volume diameter of raindrops and is insensitive to their concentration, together with Z was
expected to reduce the sensitivity of the rain rate estimate to the DSD variability. However,
ZDR is even more affected by a few largest raindrops than Z. Therefore, the benefit of using
the R(Z, ZDR) estimator instead of the R(Z) relation turned out to be relatively marginal.
Utilization of the radar variables such as KDP and A provided better improvement because
both of these variables are proportional to the DSD moments that are much closer to the
3.67th moment than Z and are immune to the radar calibration errors, attenuation in rain,
and partial beam blockage.

The sensitivity of the R(Z), R(Z, ZDR), R(KDP), and R(A) estimates to the DSD variability
at S, C, and X bands is illustrated in Figures 1–3. Scatterplots of rain rates versus their
estimates from the four optimal relations were generated using a large disdrometer dataset
obtained in Oklahoma [12]. It is obvious from all three figures that the R(Z, ZDR) scatterplots
are only slightly narrower than the R(Z) scatterplots and combining Z and ZDR may
not result in tangible QPE improvement. Moreover, additional measurement errors of
ZDR associated with its possible miscalibration and differential attenuation can make the
performance of the R(Z, ZDR) algorithm even worse than the R(Z) relation. Nevertheless,
certain advantages of using R(Z, ZDR) relations at S and C bands were reported in a number
of studies [5,6,13–20]. Many of these relations can be found in Ryzhkov and Zrnic [10]
(their table 10.3). It is not instrumental to utilize a combination of Z and ZDR for rainfall
estimation at X band because their biases caused by attenuation/differential attenuation
are too large and difficult to account for.
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Figure 1. Scatterplots of rain rates versus their estimates from relations R(Z) = 1.94 10−2Z0.694,
R(Z, ZDR) = 1.66 10−2Z0.738Z−0.979

dr , R(KDP) = 47.1 K0.790
DP , and R(A) = 4120A1.03 optimized for

Oklahoma DSD dataset at S band (λ = 11.0 cm) and T = 20 ◦C. Z and ZDR are in a linear scale.



Remote Sens. 2022, 14, 1695 4 of 33

Remote Sens. 2022, 14, x FOR PEER REVIEW 4 of 33 
 

 

Figure 1. Scatterplots of rain rates versus their estimates from relations −= 2 0.694( ) 1.9410R Z Z , 
− −= 2 0.738 0.979( , ) 1.6610DR drR Z Z Z Z , = 0.790( ) 47.1DP DPR K K , and = 1.03( ) 4120R A A  optimized for Ok-

lahoma DSD dataset at S band (λ = 11.0 cm) and T = 20 °C. Z and ZDR are in a linear scale. 

 

Figure 2. Scatterplots of rain rates versus their estimates from relations −= 2 0.712( ) 1.77 10R Z Z , 
− −= 2 0.731 0.459( , ) 1.7010DR drR Z Z Z Z , = 0.776( ) 25.3DP DPR K K , and = 0.89( ) 294R A A  optimized for 

Oklahoma DSD dataset at C band (λ = 5.3 cm) and T = 20 °C. Z and ZDR are in a linear scale. 

 

Figure 3. Scatterplots of rain rates versus their estimates from relations −= 2 0.639( ) 3.0610R Z Z , 
− −= 2 0.790 2.17( , ) 1.5010DR drR Z Z Z Z , = 0.801( ) 16.9DP DPR K K , and = 0.79( ) 43.5R A A  optimized for 

Oklahoma DSD dataset at X band (λ = 3.2 cm) and T = 20 °C. Z and ZDR are in a linear scale. 

The R(KDP) scatterplots in Figures 1–3 exhibit obvious benefit of the R(KDP) relations 
for estimation of moderate-to-heavy rain at all three microwave frequency bands. A 

Figure 2. Scatterplots of rain rates versus their estimates from relations R(Z) = 1.77 10−2Z0.712,
R(Z, ZDR) = 1.70 10−2Z0.731Z−0.459

dr , R(KDP) = 25.3K0.776
DP , and R(A) = 294A0.89 optimized for

Oklahoma DSD dataset at C band (λ = 5.3 cm) and T = 20 ◦C. Z and ZDR are in a linear scale.
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Figure 3. Scatterplots of rain rates versus their estimates from relations R(Z) = 3.06 10−2Z0.639,
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dr , R(KDP) = 16.9K0.801
DP , and R(A) = 43.5A0.79 optimized for

Oklahoma DSD dataset at X band (λ = 3.2 cm) and T = 20 ◦C. Z and ZDR are in a linear scale.

The R(KDP) scatterplots in Figures 1–3 exhibit obvious benefit of the R(KDP) relations
for estimation of moderate-to-heavy rain at all three microwave frequency bands. A simple
rule can be formulated as follows: the R(KDP) relation is advantageous for measuring rain
rate R if the value of R expressed in mm/h exceeds the value of radar wavelength λ in
cm (e.g., [21]). This means that the R(KDP) estimator is efficient for R > 10–11 mm/h at S
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band, for R > 5–6 mm/h at C band, and for R > 3 mm/h at X band. Utilization of R(KDP) at
lower rain rates is generally counterproductive because the R(KDP) estimator becomes very
sensitive to the DSD variability as can be seen from Figures 1–3 and the estimates of KDP
itself become very noisy. Such a noisiness, however, can be reduced by averaging of KDP
over a large spatial/temporal domain and the R(KDP) algorithm remains efficient even in
light rain for areal rainfall estimation [22] or monthly rain accumulation [23].

A more quantitative assessment of relative performance of different rainfall relations
can be obtained using Figure 4 where the dependencies of the fractional mean absolute
error (fMAE) on rain rate for the R(Z), R(Z, ZDR), R(KDP), and R(A) relations optimized
for the Oklahoma DSDs at S, C, and X bands are shown. The advantages of all three
polarimetric relations compared with the R(Z) relation are obvious in a wide range of rain
intensities at all three microwave bands. The R(A) relation (which will be discussed in more
detail in the next Section 2.2) is an apparent winner at low-to-moderate rain rates. The R(A)
advantage is particularly impressive at S band where the fMAE caused by the variability of
DSD is less than 10% in a wide range of rain intensities. For higher rain rates exceeding
10 mm/h, fMAE tends to increase at C and X bands for all relations except R(KDP) that is
least sensitive to the effect of the resonance scattering on large raindrops which is primarily
responsible for such an increase. Therefore, the KDP-based relation is an obvious choice for
heavy rain at C and X band.

Because KDP is proportional to the radial derivative of differential phase ΦDP, it
is immune to radar miscalibration, attenuation, partial beam blockage, and presence of
water or snow on the surface of a radome. The immunity of KDP to attenuation makes
it particularly beneficial for rainfall measurements at shorter wavelengths. The R(KDP)
relation is commonly used if rain is mixed with hail as was originally recommended by
Balakrishnan and Zrnic [24]. Until recently, it was believed that hail does not contribute
much to KDP. This is not the case for melting graupel and water-coated hail of small size
and high concentration. Moreover, small, and wet graupel/hail can produce anomalously
high KDP well-exceeding typical values of KDP in rain. For example, Kumjian et al. [25]
measured KDP as high as 17 deg/km at S band in a storm producing large accumulations
of small hail. If such a value of KDP is converted to rain rate using a standard S-band
relation R(KDP) = 44.0|KDP|0.822, it would yield an unrealistic rain rate of 452 mm/h. In
order to mitigate such an obvious overestimation, the R(KDP) with a smaller multiplier is
recommended if the cross-correlation coefficient ρhv drops below a certain level (0.97) in
areas of high Z indicating the presence of hail [26], see Section 4. The KDP-based algorithms
for rainfall estimation were used in a large number of studies and operational applications
(e.g., [1–3,5–7,13–15,27–41]). A long list of various R(KDP) relations can be found in [10]
(their Table 10.3).

2.2. Attenuation-Based Rainfall Retrievals

A game-changer during the last decade was the introduction of the rainfall estimation
methodology based on specific attenuation A [20,26,39,41–48]. Because this methodology
is relatively new, herein we provide its description in more detail compared with other
rainfall estimation techniques. A radial profile of A can be retrieved from the radial profile
of attenuated Za and two-way path integrated attenuation PIA along the propagation path
(r1,r2) in rain as [42]

A(r) =
[Za(r)]

bC(b, PIA)

I(r1, r2) + C(b, PIA)I(r, r2)
(2)

where

I(r1, r2) = 0.46 b
r2∫

r1

[Za(s)]
bds (3)

I(r, r2) = 0.46 b
r2∫

r

[Za(s)]
bds (4)
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C(b, PIA) = exp(0.23bPIA)− 1 (5)

In Equations (2)–(5), the factor b is a constant parameter (usually between 0.6 and 0.9
at microwave frequencies). The value of PIA cannot be estimated with a single-polarization
radar but can be computed from the total span of a differential phase ∆ΦDP measured by a
dual-polarization radar:

PIA(r1, r2) = α[ΦDP(r2)−ΦDP(r1)] = α ∆ΦDP (6)

where α is equal to the average ratio of A and KDP along the propagation path.
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It follows from Figures 1–4 that the R(A) estimate is much less affected by the DSD
variability because the R(A) scatterplots are significantly narrower than the ones for the
R(Z), R(Z, ZDR), and R(KDP) relations, particularly at S band. Therefore, the R(A) algorithm
has a chance to work best of all these relations at S band where attenuation in rain is
lowest. At first glance, this seems counterintuitive. However, even small path integrated
attenuation PIA can be estimated reliably because of its strong correlation with ∆ΦDP
according to Equation (6). The R(A) relation is almost linear at S band:

R(A) = 4120A1.03 (7)

where λ = 11.0 cm and T = 20 ◦C ([42]). It deviates from linearity at C and X bands because
of the more pronounced effects of resonance scattering on raindrops at shorter wavelengths.
As a result, the effectiveness of utilizing specific attenuation at C and X bands for rainfall
estimation is lower than at S band. It is evident from Figures 2–4 that the R(A) relation has
apparent advantages for lower rain rates whereas the R(KDP) relation seems to be optimal
for heavy rain. One of the advantages of the R(A) estimates compared with R(KDP) is its
better radial resolution which is similar to the one of Z and R(Z).

The radar retrieval formulas used for plotting scattergrams in Figures 1–3 are opti-
mized for a disdrometer dataset obtained in Oklahoma. The parameters of radar rainfall
relations vary depending on rain type, therefore such relations should be adjusted using
DSD data collected in a particular climate or geographical area. Microphysical character-
istics of rain may vary in a wide range even in a particular geographical region such as
Oklahoma. Different types of rain can be distinguished using the average dependencies
of ZDR on Z. Figure 5 shows Z–ZDR dependencies corresponding to different percentiles
of ZDR for a given Z in rain simulated from 47114 DSDs measured in Oklahoma. The
simulations are for S band at T = 20 ◦C. A tropical rain, a bulk of which is generated
via a “warm rain” process below the melting layer, is commonly characterized by high
concentration of small- and medium-size drops with a relative deficit of large drops which
results in a lower value of ZDR at a given Z as in the 0–20% range of ZDR between two
lowest curves in Figure 5. A continental rain, mostly originated from melting ice, is usually
dominated by large raindrops with a lower concentration of small drops as opposed to the
tropical rain and is characterized by higher values of ZDR for a given Z. The two families of
DSDs belonging to the 0–20% and 80–100% ranges can be designated as “very tropical” and
“very continental” rain. In Figure 6, the log(R) vs. A scatterplots corresponding to the very
tropical rain at S, C, and X bands are marked by red symbols, whereas the very continental
scatterplots are presented in blue symbols. It is evident that the clusters associated with
these two rain types almost coincide at S band and become more separated at C and X
bands. The R(A) relations are especially beneficial for lower rain rates and for tropical rain
of any intensity (red clusters). At C and X bands, the separation between red and blue
clusters identifies that different R(A) relations must be utilized for tropical and continental
rain. For a given rain rate, the value of A is larger for a continental rain which means that
the multiplier in the R(A) relation should be lower for a continental rain. It can be shown
that a similar rule is applied for the R(KDP) and R(Z) relations.
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Specific attenuation is a strong function of radar wavelength λ and temperature
T; therefore, the parameters of the power-law R(A) relation are also wavelength- and
temperature-dependent. At S band, this, however, does not preclude the use of a single
R(A) relation specified by Equation (7). As is shown in [10], the value of A estimated from
Equation (2) is approximately proportional to the magnitude of the parameter α which
is proportional to A and depends on λ and T in a similar manner. This leads to almost
complete cancellation of both dependencies in the final estimate of R which allows using a
single R(A) relation provided by Equation (7). Note, that such cancellation is incomplete at
C and X bands and a single R(A) relation is not as accurate as at S band.

A very important advantage of the KDP- and A-based QPE algorithms is their immunity
to the radar miscalibration, attenuation in rain, partial beam blockage, and impact of a wet
radome. The immunity to partial beam blockage is illustrated in Figure 7 where the fields
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of 6-h rain total computed from R(Z) and R(A) are displayed. Large negative bias in the
rain totals retrieved from R(Z) associated with partial beam blockage caused by trees near
the radar is completely eliminated in the rain field estimated from R(A).

All discussed radar rainfall relations have advantages and disadvantages at different
rain rates and radar wavelengths. Hence, it is beneficial to use composite algorithms by
combining various relations. The operational polarimetric rainfall estimation algorithm
currently implemented on the WSR-88D radar network in the US uses a combination of
the R(Z), R(A), and R(KDP) relations [26,46,47]. The R(KDP) relations are used in areas of
high Z where rain may be mixed with hail and the R(A) relation is utilized otherwise. The
QPE algorithm resorts to various R(Z) relations if the radar sample is within the melting
layer or above or if the total span of differential phase ∆ΦDP in rain is too small or beam
blockage is severe. The details of the operational WSR-88D QPE algorithm (labeled Q3DP)
are in [26] and Section 4 of this review.
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fatalities and another one was associated with Hurricane Ida during the period from Au-
gust 30 to September 2 with a death toll of 67 people. The Hurricane Ida had its landfall 
in Louisiana and transformed from a tropical depression to a post-tropical cyclone that 
rolled into the US northeast two days later. Color-coded maps in the upper images in 

Figure 7. Maps of 6-h rain total obtained from the KVNX WSR-88D radar on 20 May 2011
(0800–1400 UTC) using R(Z) and R(A) algorithms. Gauge accumulations (mm) are displayed in
white squares.

The Q3DP algorithm became operational in October 2020 and has demonstrated
very good performance so far, particularly in heavy rain associated with flash floods.
Figure 8 illustrates its performance for the most significant flash flood events of the 2021
warm season in the US. One of them occurred in Tennessee on August 21 and resulted
in 27 fatalities and another one was associated with Hurricane Ida during the period
from August 30 to September 2 with a death toll of 67 people. The Hurricane Ida had its
landfall in Louisiana and transformed from a tropical depression to a post-tropical cyclone
that rolled into the US northeast two days later. Color-coded maps in the upper images
in Figure 8 show 24-h radar-estimated rain totals and the circles, their comparison with
rain gauges. The size of the circle is proportional to the rain amount whereas different
shades of red and blue indicate various levels of radar underestimation and overestimation,
respectively. White or pale colors indicate either the absence of bias or a small bias. Indeed,
the scatterplots of 24-h totals versus their radar estimates shown in the bottom panels
indicate very good performance in all three cases with the average bias below 10% and the
correlation coefficient well-above 0.9.
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Figure 8. (Top panels) The maps of 24-h rain total estimated using Q3DP rainfall algorithm in
Tennessee during the period ending at 1200 UTC on 21 August 2021, in Louisiana during the period
ending at 1200 UTC on 30 August 2021, and US northeast during the period ending at 1100 UTC on
2 September 2021. Colored dots represent CoCoRaHS gauge sites. The size of the dots represents
gauge observed amounts and the color represents the gauge/QPE (G/R) bias ratios. (Bottom panels)
Scatterplots of radar 24-h rain totals versus their gauge estimates. The statistic scores in the scatterplots
are the bias ratio (R/G), mean absolute error (MAE), and correlation coefficient (CC).

2.3. Further Optimization of the R(A) and R(KDP) Relations

Although the polarimetric rainfall estimators R(A) and R(KDP) have undeniable advan-
tages compared with the old Z-based methods, they may require further optimization. It
was mentioned before that the R(A) relation is practically insensitive to the DSD variability
(at least at S band) but the estimate of A from Equations (2)–(6) depends on DSD because
the factor α is a strong function of ZDR (Figure 9). Such a dependence of α on ZDR at S band
and temperature 20 ◦C can be approximated by equation:

α(ZDR) = 0.008 +
0.009

ZDR − 0.03
(8)

where ZDR > 0.2–0.3 dB. In Equation (8), ZDR is expressed in dB. In the existing R(A)
algorithm, the parameter α is optimized on the scan-to-scan basis and determined from
the slope of the ZDR(Z) dependence as described in [10,26,46]. The use of a single factor
α for a whole radar coverage area generally leads to some underestimation of light rain
and occasional overestimation of heavy rain. This is attributed to the fact that light rain is
commonly characterized by larger α whereas significantly lower α might be more typical
for heavier rain often associated with deep convection, and the use of a single “net” α (or
<α>) for both rain types produces such biases (see Figure 9).

There are a couple of possible approaches to address this issue and to take into the
account an azimuthal dependence of <α>. One of them is proposed in [49] using variational
principles. According to [49], the state vector X consists of the “true” values of Z and
ZDR (not biased by attenuation/differential attenuation) along the radial in rain and the
observation vector Y is composed of the radial profiles of the measured (attenuated) values
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of Z(Z(m)) and ZDR(ZDR
(m)) and total differential phase ΦDP

(m). The “forward operator”
includes analytical relations for computing simulated KDP

(s), A(s), specific differential
attenuation ADP

(s), and simulated differential phase ΦDP
(s) from the “true” values of Z

and ZDR. The components of the state vector are retrieved using the variational routine
to match the simulated and measured vectors Y. After the “true” values of Z and ZDR are
determined, the corresponding values of A and KDP along each ray are computed using
the forward operator, and the net <α> for a provided azimuth is estimated as the ratio
ΣA(i)/ΣKDP

(i) where summation is performed along the propagation path in rain. Such a
routine is computationally expensive, requires well-calibrated values of the measured Z(m)

and ZDR
(m) and its operational utilization must be demonstrated.
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Figure 9. The scatterplot of α versus ZDR simulated from the Oklahoma disdrometer data at
λ = 11.0 cm and T = 20 ◦C. Black curve represents the α(ZDR) dependence specified by Equation (8).

A possible alternative methodology implies the use of the radial profile of α(ZDR) for
estimation of <α> separately for each azimuth. The “net alpha” for a provided radial of
data and propagation path in rain (r1,r2) is a ratio:

< α >=
PIA

∆ΦDP(r1, r2)
=

r2∫
r1

A(r)dr

r2∫
r1

KDP(r)dr
=

r2∫
r1

A(r)dr

r2∫
r1

A(r)dr
α[ZDR(r)]

dr
(9)

Assuming A = aZb, Equation (9) can be rewritten as:

< α >=

r2∫
r1

Zb(r)dr

r2∫
r1

Zb(r)
α[ZDR(r)]

dr
(10)

where Z is the “true” reflectivity not biased by attenuation. The net α can be also estimated
using a different formula by using the KDP = cZd relation instead of the A(Z) relation.

PIA = 2
r2∫

r1

A(r)dr = 2
r2∫

r1

KDP(r) α[ZDR(r)]dr (11)



Remote Sens. 2022, 14, 1695 12 of 33

Following [50], KDP can be expanded as:

KDP(r) =
∆ΦDP(r1, r2)

2
r2∫

r1

[Z(r)]ddr
[Z(r)]d (12)

which after substituting into Equation (11) yields:

< α >=

r2∫
r1

[Z(r)]dα[ZDR(r)]dr

r2∫
r1

[Z(r)]ddr
(13)

The values of Z and ZDR in Equations (10) and (13) should be first corrected for
attenuation/differential attenuation.

Azimuthal profiles of <α> estimated using Relations (10) and (13) for the case of a
mesoscale convective system are presented in Figure 10 (upper right panel) using black
and red dots respectively. It is obvious that Relations (10) and (13) provide very similar
results. In the middle and bottom right panels, the azimuthal dependencies of Z and
ZDR averaged over the whole propagation path in rain are displayed. As expected, the
azimuthal dependence of <α> exhibits strong anti-correlation with averaged ZDR and
the absence of correlation with averaged Z. The lowest value of <α> is observed in the
azimuthal direction along the squall line in the NE sector.
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Figure 10. PPIs of Z and ZDR measured by the KFWS WSR-88D radar on 9 January 2020 at 23:30:42
UTC (left panels). Corresponding azimuthal dependencies of the retrieved <α> and radially averaged
Z and ZDR (right panels).

This routine for <α> optimization, if proven efficient, can replace the existing rather
cumbersome “ZDR slope” methodology that does not allow capturing the azimuthal vari-
ability of <α>. Note that the value of <α> obtained using this technique can be used for
polarimetric attenuation correction of Z that utilizes the relation ∆Z = <α> ΦDP. Most of the
existing attenuation correction techniques assume a fixed value of <α> whereas the actual
value of <α> can vary quite significantly with time and azimuth as Figure 10 indicates. The
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value of <α> obtained from Equations (10) and (13) may also be utilized for optimization of
the R(KDP) relations because the parameters of these relations generally depend on DSDs
and rain type. The multiplier a1 in the R = a1Kb1

DP power-law relation should be higher for
tropical rain characterized by larger <α> and lower for continental rain with smaller <α>. It
can be shown that the value of a1 is equal to 35.8, 50.1, and 62.7 for b1 = 0.82 for <α> = 0.015,
0.030, and 0.050 dB/deg respectively. Such tuning of the R(KDP) relations based on the
value of <α> is strongly recommended.

2.4. Polarimetric VPR

Once the radar beam intercepts the melting layer (ML) and snow/ice aloft, the relation
between reflectivity (and other variables) and rain rate at the surface becomes complicated.
Because Z in the ML is usually higher than in rain near the surface, the R(Z) relation valid
in pure rain inevitably overestimates the surface rain rate at the distances where the radar
samples ML. At longer distances where the radar resolution volume is in ice/snow above
the ML, underestimation takes place. Various methods have been developed to address the
melting layer problem (e.g., [51–54]). Common to these is the estimation of a vertical profile
of reflectivity (VPR) and its use to retrieve rain rate near the ground. One of the ways to
obtain the VPR is to scan the storm, reconstruct its structure near the radar, and extrapolate
its effect to long range assuming horizontal homogeneity [53,55]. Such volume-scan VPR
corrections are often part of operational algorithms for QPE. Andrieu and Creutin [56]
and Andrieu et al. [57] added sophistication by applying discrete inverse theory based
on hourly averaged VPRs at two elevation angles (1◦ and 3◦). Local VPRs correction over
small areas (20 km in range and 20◦ in azimuth) using an inverse filtering of the beam
effects was proposed by Vignal et al. [58] and proven to be better in Switzerland [59] and
US [60] than “global” corrections.

The concept of an “apparent” VPR or AVPR was introduced by Zhang and Qi [61] and
Qi et al. [62]. The VPR correction is performed in the “bright band affected area” (BBA)
within the stratiform part of the storm that is identified using radar reflectivity Z and
cross-correlation coefficient ρhv. The average radial profile of Z at the lowest antenna tilt
is determined within BBA and subtracted from the radial profiles of Z at each particular
azimuth. Then the standard R(Z) relation is applied to estimate rain rate. Therefore, it
is expected that the radial dependency of Z is entirely determined by the vertical profile
of Z through the ML and the vertical structure of a storm is horizontally uniform within
BBA. This methodology assumes that the BBA is relatively homogeneous azimuthally and
is called “tilt-VPR”. Such an assumption can fail in the presence of frontal boundaries
with large variations in the ML height which usually happens during cold season with
lower ML. Hanft and Zhang [63] suggested the so-called dpVPR methodology to derive
azimuthally dependent VPRs which results in the overall improvement of the VPR correc-
tion as illustrated in Figure 11. In the absence of the VPR correction, the 24-h radar derived
rain totals are greatly overestimated (blue circles in Figure 11c,f). The positive QPE bias is
dramatically reduced with tilt-VPR correction applied (Figure 11a,d) and the QPE results
are further improved after the dpVPR correction scheme is utilized (Figure 11b,e). Note
that, in addition to reducing the artificial enhancement of Z and R(Z) in BBA, the dpVPR
algorithm also reduces the negative bias in R(Z) at longer distances from the radar where
the radar beam is above the ML.

An alternative methodology for polarimetric VPR (PVPR) implies determination of
the heights of the ML top and bottom over large areas using the recent melting layer
detection algorithm (MLDA) described in [64]. According to this methodology, a multitude
of the model radial profiles of Z and ρhv at lowest antenna tilts for different heights and
“strengths” of the ML are simulated and stored in lookup tables. The “strength” of the ML
characterizes both its thickness and the depth of the corresponding ρhv minimum that is
usually well-correlated with the Z enhancement in the ML. The simulation routine explicitly
takes into account radar beam broadening that has a strong impact on the ML signature at
lower antenna elevations and large distances from the radar. Then an appropriate model
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profile of Z at every azimuth and elevation is determined by finding the best match between
the model and observed profile of ρhv. Because all simulated model profiles of Z and ρhv are
labeled by the intrinsic height and strength of the ML, such a matching routine allows for
estimating the parameters of the ML such as the heights of its top and bottom. In addition,
a model radial profile of Z associated with these parameters of the ML is identified and
subtracted from the measured radial profile of Z at a particular azimuth. The difference
between the PVPR and dpVPR routines is that PVPR is essentially coupled with the MLDA
and uses the model radial profiles of Z whereas dpVPR is based on the piecewise linear
approximation of the measured average radial profile of Z in a narrow azimuthal interval
without quantification of the ML height and depth. Both VPR techniques have the same
deficiency, an assumption of radial uniformity of Z and corresponding rain rate within the
range interval affected by the “bright band contamination”. The tilt-VPR and dpVPR have
been validated for a significant number of rain events [61–63] while massive validation of
PVPR is in order. The performance of the PVPR algorithm is illustrated in Figures 12 and 13
for the rain event with a low ML that is very well-identified in the QVPs of Z, ZDR, ρhv,
and KDP (Figure 12). The maps of hourly rain total retrieved from R(Z) in the area affected
by ML before and after PVPR correction of Z measured by the KLSX WSR-88D radar are
shown in Figure 13. Artificial enhancement of the estimated rain accumulation due to
the increase in radar reflectivity in the ML clearly visible in the left panel is completely
eliminated after PVPR is utilized (right panel).
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Figure 11. Twenty-four h radar QPEs from the KRTX WSR-88D radar ending at 15:00 UTC 07 February
2017 with (a) tilt-VPR, (b) dpVPR, and (c) no VPR correction and the corresponding scatter plots vs.
CoCoRaHS gauges (panels (d–f), respectively). The Z = 210 R1.46 relation is used.
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Concluding this section, we must mention recent studies where artificial intelligence
(AI)/machine learning (ML) algorithms were used for polarimetric QPE. This is a rapidly
growing area of research stimulated by accumulation of large datasets of polarimetric radar
variables combined with surface rainfall measurements and facilitated by the availability
of abundant modern computer resources. A detailed analysis of the AI/ML polarimetric
QPE algorithms is beyond the scope of this review and we cited recent articles by Zhang
et al. [65], Shin et al. [66], and Wolfensberger et al. [67] as examples for an interested reader.
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3. Polarimetric Measurements of Snow
3.1. Historical Overview

Radar snow measurements present an enormous challenge due to immense variability
of snow particle size distributions (PSDs), density, shapes, orientations, crystal habits, and
terminal velocities. Historically, radar reflectivity factor at horizontal polarization Z was
used to estimate snow water equivalent rates S in the form of numerous power-law relations
(e.g., [68–75]). The majority of these relations assume that Z is proportional to S2. Radar
reflectivity is very close to the 4th PSD moment for low-density snow (e.g., aggregates) due
to the inverse dependence of snow density on the snowflake size whereas S is proportional
to significantly lower the order moment of PSD (2.1–2.2) [10]. This is one of the primary
problems with existing S(Z) relations. The accuracy of S(Z) estimates is altitude dependent.
At longer distances from the radar where the radar beam is much higher, the performance
degrades due to the significant changes in Z with height, especially in aggregated snow.
Despite these deficiencies, the conventional radar algorithms still utilize the standard
S(Z) relations, which exhibit roughly an order of magnitude difference in the estimates
of snowfall rate for the same reflectivity factor. This traditional approach is based on the
usage of a multitude of climatological S(Z) relations optimized for different snow types and
geographical areas. For example, the US National Weather Service (NWS) operationally
uses several S(Z) relations for radar snow QPE (depending on the geographical region)
as presented in Table 1 and it has not yet capitalized on the polarimetric capability of the
WSR-88D radars.

Table 1. Summary of Z(S) relations for dry snow listed in the literature and utilized by the WSR-88D
network in the United States.

Source Z(S) Relation for Dry Snow

Gunn and Marshall [68] Z = 448 S2

Sekhon and Srivastava [69] Z = 399 S2.21

Matrosov et al. [72] Z = (100–130) S(1.3–1.55)

Huang et al. [76] Z = (106–305) S(1.11–1.92)

Saltikoff et al. [77] Z = 100 S2

Szyrmer and Zawadzki [73] Z = 494 S1.44

Wolfe and Snider [78] Z = 110 S2

Huang et al. [79] Z = (130–209) S(1.44–1.81)

Von Lerber et al. [80] Z = (53–782) S(1.19–1.61)

WSR-88D, Northeast Z = 120 S2

WSR-88D, Great Lakes Z = 180 S2

WSR-88D, North Plains/Upper Midwest Z = 180 S2

WSR-88D, High Plains Z = 130 S2

WSR-88D, Inter-mountain West Z = 40 S2

WSR-88D, Sierra Nevada Z = 222 S2

Various alternatives to a Z-based approach for snow QPE were recently explored
through the designated field campaigns. The GPM cold-season Precipitation Experiment
(GCPEx, [81]), conducted by the National Aeronautics and Space Administration (NASA,
Washington, DC, USA) and Environment Canada in Ontario, Canada, was one of such
campaigns with a goal to investigate the utility of the multi-frequency (active and passive)
microwave sensors for better classification and quantification of snow. Huang et al. [82]
utilized a dual-wavelength ratio (DWR) of reflectivities at Ku and Ka bands available from
the GCPEx data to develop the S(Z) relation parametrized by DWR. The difference between
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Zs at Ku and Ka bands increases with the characteristic size of snowflakes and the use
of a multiplier in the S(Z) relations depending on DWR, helps to reduce the PSD-related
uncertainty in the radar snow estimates.

Another campaign that significantly expands our knowledge of the snow microphysics
was Biogenic Aerosols—Effects on Clouds and Climate (BAECC) 2014. Von Lerber et al. [80]
utilized the snow data from BAECC to investigate the connection between the snow
properties and radar observations using a video disdrometer and derived event-based
power-law mass-size relations for ice/snow along with the corresponding S(Z) relations.
They linked the changes in the S(Z) relation’s exponent to the variations in the mass-size
relation’s exponent. The multiplier of the S(Z) relation is determined by the prefactors of
the mass-size and velocity-size relations and by the intercept parameter N0 of the particle
size distribution. The changes in the S(Z) multiplier for a given N0 are also associated
with the changes in a liquid water path, a proxy for the degree of riming. In another study
which partially used BAECC data in conjunction with the data from the University of
Helsinki Hyytiälä station, Tiira and Moisseev [83] developed the unsupervised method for
classification of vertical profiles of polarimetric radar variables using k-means clustering.
They showed that the profiles of radar variables can be grouped into 16 snow classes which
capture the most important snow growth and ice cloud processes. This can be used for the
development of the snow class-based S(Z) relations that capture the variability of snow
PSD, density, and fall velocity.

3.2. Radar Polarimetric Relations for Snow Estimation

Radar polarimetry opens new horizons for snow habit classification and quantification
(e.g., [83]). Since the advance of polarimetry, only a handful of studies have explored
polarimetric quantitative snow retrievals, mostly focused on ice water content (IWC) quan-
tification. Vivekanandan et al. [84] and Lu et al. [85] utilized a specific differential phase
KDP for estimation of IWC. Aydin and Tang [86] investigated possible methods for IWC re-
trievals in the clouds composed of pristine ice crystals using the combination of differential
reflectivity ZDR and KDP. Ryzhkov et al. [87,88] and Ryzhkov and Zrnic [10] used a combi-
nation of KDP and ZDR or KDP alone to quantify IWC of pristine or lightly-to-moderately
aggregated ice. Using the instrumented aircraft, Nguyen et al. [89] derived the empirical
IWC(KDP) and IWC(KDP, ZDR) relations from the airborne X-band polarimetric radar mea-
surements and in situ microphysical probes. These empirical relations are very similar to
the theoretical ones derived in [88]. Bukovčić et al. [90] introduced the first polarimetric
algorithm (based on the KDP and Z) for estimation of the extinction coefficient and visibility
in snow which are traditionally linked to the snowfall rates (e.g., [91–97]). The algorithm,
tested with S-band WSR-88D radar data, showed a good potential for quantification of
extinction and visibility in snow.

Hassan et al. [98] proposed one of the first polarimetric relations for snowfall rate
estimation using ZDR and Z at C band. They showed that the addition of ZDR to Z produces
comparable results to standard S(Z) relations. Much more success in polarimetric snow
QPE can be achieved if Z is combined with specific differential phase KDP. A theoretical
S(KDP, Z) relation in a form of a bi-variate power-law was derived by Bukovčić et al. [99]
assuming an exponential PSD, N(D) = N0 exp(−ΛD), and Rayleigh approximation:

S(KDP, Z) =
cs

(FoFs)
as (KDPλ)as Zbs (14)

where λ is the radar wavelength in mm, and Z is in mm6m−3. It is also assumed that
the snow density ρs and terminal velocity of snowflakes vs. are related to the particle
equivolume diameter D as:

ρs = αsD−1 (15)

and:
Vs = τsDδs (16)
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where in Equation (14), Fo and Fs are the factors characterizing orientation and shape of
snowflakes and parameters as and bs are the functions of δs whereas cs is a function of αs,
δs, and the density of air ρa (or atmospheric pressure). The factor Fo is determined by the
width of the canting angle distribution σs and the factor Fs is a function of the aspect ratio
a/b of snowflakes specified in [10,99], see Figure 14. It can be shown that the theoretical
Relation (14) is simplified as:

S(KDP, Z) = 1.6K0.62
DP Z0.38 (17)

where λ = 11.0 cm, a/b = 0.65, σs = 0◦, and αs = 0.178 (as in [100]).
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Relations (14) and (17) are derived for an exponential size distribution. A generalized
empirical S(KDP, Z) relation is derived from the extensive Oklahoma snow 2DVD mea-
surements of PSDs and terminal velocities assuming wide ranges of particle aspect ratios
(0.5–0.8) and the canting angle distribution width σ (0–40◦) [99]. It has a form:

S(KDP, Z) = 1.5K0.62
DP Z0.33 (18)

which is very close to the theoretical Relation (17). For practical purposes, an alternative
S(KDP, Z) relation can be used that explicitly takes into account the shape and orientation
factors as well as air density (or atmospheric pressure p):

S(KDP, Z) =
27.9× 10−3

(FoFs)
0.62

(
p0

p

)0.5
(KDPλ)0.62Z0.33 (19)

In Equation (19), p0 = 1013 mb, KDP is in deg/km, and λ is in mm.
The reason why the multivariate power-law S(KDP, Z) relations outperform the ones

based on a single Z is that the KDP of snow is proportional to the first moment of its particle
size distribution (PSD) if the bulk density of snow decreases with the size of snowflakes as
specified by Equation (15) [10]. The product of KDP (proportional to the first moment of
PSD) and Z (proportional to its fourth moment) approximates snow rate S (which is close
to the second PSD moment) better than the S(Z) power-law relation and is less sensitive
to the PSD variability. This is well-illustrated in Figure 15 where the scatterplots of SWE
measured by disdrometer during 16 Oklahoma snow events versus its estimate from the
S(Z), S(KDP, Z), and the S(KDP, ZDR) relations (discussed next) are displayed. The values
of radar variables are simulated from the measured PSD assuming certain shape and
orientation factors [99,101]. It is obvious that the impact of PSD variability is significantly
reduced if polarimetric snow relations are utilized.
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Figure 15. Scatterplots of snow water equivalent rates measured by disdrometer during 16 Oklahoma
snow events versus their estimates from the S(Z), S(KDP, Z), and S(KDP, Zdr) relations.

The biggest downside of the S(KDP, Z) snow estimator is its sensitivity to the shape
and orientation factors Fs and Fo. This emphasizes the need for realistic assumptions about
snow particles’ shapes and orientations either from in situ microphysical measurements or
from polarimetric radar retrievals. A possible alternative solution is to find radar relations
that are not sensitive to the variability of shapes and orientations. Such relations based
on the joint use of KDP and ZDR were first suggested by Ryzhkov et al. [87,88]). It can be
shown that the ratio KDP/(1 − Zdr

−1) (where Zdr = 100.1ZDR(dB)) is practically immune to
the changes in particle shapes and orientations. The Nguyen et al. [89] study confirms
that the theoretical IWC(KDP, Zdr) relation from [87,88] is very close to their empirical
relation derived from the side-looking airborne X-band radar measurements of KDP and
ZDR and in situ observations onboard the Convair-580 aircraft during the High Altitude Ice
Crystals—High Ice Water Content (HAIC—HIWC) campaign. This served as a motivation
for derivation of S(KDP, Zdr) relation using the theoretical IWC(KDP, Zdr) relation as a
starting point.

Because snow rate is proportional to the product of IWC and average terminal velocity
vs. (or Dδs

m ) of snowflakes according to Equation (16):

S(KDP, Zdr) ∼ IWC(KDP, Zdr)Dδs
m (20)

where Dm is the mean volume diameter of snowflakes and IWC and Dm are determined
using formulas [10]:

IWC(KDP, Zdr) = 4.0× 10−3 KDPλ

1− Z−1
dr

(21)

and:

Dm = −0.1 + 2.0

(
Z(1− Z−1

dr )

KDPλ

)1/2

(22)

A formula for practical utilization has a form [99]:

S(KDP, Zdr) = 10.8× 10−3
(

p0

p

)1/2 KDPλ

1− Z−1
dr

D0.15
m (23)

Although relation Equation (23) is immune to the variability of shapes and orientations,
it is somewhat sensitive to the degree of riming quantified by the factor αs in Equation (15).
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It is also quite vulnerable to possible biases of the ZDR measurements, especially if ZDR is
low. Hence, relation Equation (23) is not recommended to be used if ZDR < 0.2–0.3 dB.

Capozzi et al. [102] utilized an almost identical approach (using T-matrix scattering
simulations instead of Rayleigh approximation) as Bukovčić et al. [101] to derive X-band
polarimetric radar relations for snowfall rates using KDP or a combination of KDP and Z.
They obtained comparable results to the wavelength-scaled S(KDP, Z) relation from [101]
using X-band radar measurements in southern Italy, confirming that combining KDP with
Z or ZDR improves the accuracy of snowfall rate estimates compared with the Z-based
relations, as demonstrated in the subsequent study of Bukovčić et al. [99].

Because KDP in snow is usually quite low and noisy, especially at S band, its additional
spatial averaging is required to obtain reliable and stable estimates of KDP and S. Such
averaging is implemented as part of the Quasi-Vertical Profiles (QVPs) technique introduced
by Ryzhkov et al. [103] which prescribes azimuthal averaging of polarimetric radar variables
measured at higher antenna elevations. Similar techniques such as range-defined QVPs
(RD-QVP; [104]), enhanced vertical profiles (EVP; [105]), and columnar vertical profiles
(CVPs; [106]) became recently available to address the noisiness of KDP and ZDR in snow.

3.3. Results of Observations

The performance of polarimetric algorithms for snow estimation is illustrated for a
heavy snowfall event. This storm was a classical nor’easter named Stella, which occurred
on 14–15 March 2017. The storm produced heavy snow throughout the inner mid-Atlantic
and northeast US, causing hurricane-like wind gusts along the New England coast. Several
daily snowfall records were broken (e.g., Binghamton, NY; Burlington, VT; Scranton, PA),
with the total maximum of 42 in (~1 m) in West Winfield (NY). The storm ranked twelfth
on the Regional Snowfall Index (RSI; [107]) and twenty-third on the Northeast Snowfall
Impact Scale (NESIS; [108]), disrupting the daily routine of more than 60 million people.

Figure 16 shows an example of composite PPI of Z, KDP, ZDR, and cross-correlation
coefficient ρhv measured by the KBGM WSR-88D radar at El = 0.5◦ during the storm.
Specific differential phase KDP exhibits inherent noisiness which, nevertheless, does not
prevent to reveal a definite spatial structure with KDP enhancement in the area that does not
coincide with the region of increased Z. Aggressive azimuthal averaging implemented in
the RD-QVP methodology helps to significantly reduce the noisiness of KDP (see Figure 17).

The range-defined quasi-vertical profiles (RD-QVPs) of Z, KDP, and ZDR in a height-
vs-time format obtained from the KBGM WSR-88D radar and vertical profiles of radar-
retrieved snow water equivalent (SWE) accumulations are presented in Figure 17. The
RD-QVP radar data were azimuthally averaged in a 15-km-radius circular area centered
on the radar. Dashed lines indicate temperature isotherms obtained from the RAP model.
Moderate to heavy snowfall rates persisted from 0700 to 1500 UTC, with a few intense
snow bands later in the event. During these periods, the RD-QVP of Z exhibited elevated
values greater than 30 dBZ (Figure 17a). Enhanced values of KDP and especially ZDR
(Figure 17b,c) are noticeable in the dendritic growth layer (DGL) centered at about −15 ◦C.
Such enhancements occasionally extended all the way to the ground (e.g., from 0700 to 1330
UTC). This marked a period of moderate concentration of smaller and denser dendrite-type
crystals with a lower degree of aggregation at the surface. These can occasionally be mixed
with the irregular-shape crystals, indicated by the enhanced values of KDP aloft (~1030 to
1130 UTC). This KDP increase, caused by high concentrations of irregular-shape crystals,
comes as a precursor to the biggest low-level increase in Z, which shows a promising
potential for snow nowcasting. In the later storm stages (1900 UTC onward) temperatures
and cloud-top heights decrease, and the pristine dendrite-type crystals which do not
aggregate, almost perfectly align with the −15 ◦C isotherm. These are also seen as ZDR
streaks reaching the ground at 2010 and 2210 UTC. Previous observational studies [109,110]
saw similar signatures in their data.
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Figure 16. Composite PPI of (a) Z, (b) KDP, (c) ZDR, and (d) ρhv at El = 0.5◦ measured by the KBGM
WSR-88D radar in the Stella snowstorm on 14 March 2017 at 1256 UTC.

Three algorithms were used to estimate total SWE accumulation profiles from the
RD-QVP data. These include the S(Z) = 0.088Z0.5 relation which is commonly used for the
northeast US and polarimetric Relations (19) and (23) assuming that the particle aspect ratio
is 0.6 and the canting angle spread σ is 20◦. Actual SWE total accumulation at the surface
of about 50 mm was measured by the Automatic Surface Observations Station (ASOS) in
the close proximity to the KBGM radar. Both polarimetric estimates (red and green lines in
Figure 17d) show more realistic representation of the vertical profile of accumulated SWE.
The S(Z) relation produces apparent underestimation of snowfall (blue line in Figure 17d).
Polarimetric relations are in accord with the notion that the bulk of precipitation (about 80
to 90%) is formed in the DGL ([111]). On the contrary, S(Z) produces about 40% of its total
accumulation within the DGL (from ~2.0 to 4.5 km AGL) and moderately underestimates
surface snow measurements (32 vs. 50 mm). Polarimetric relations at the lowest usable
KDP height level (about 450 m AGL) yield results which are very close to the surface
ASOS measurements.

Instantaneous snowfall rates and accumulations show more detailed pictures about
the temporal evolution of these estimates (Figure 18). The standard S(Z) relation mod-
erately underestimates snowfall rates throughout the event, with peaks not greater than
3 mm h−1 (gauge maximum is 5.5 mm/h). Polarimetric relations are in good agreement
with the gauge, especially S(KDP, Z), which more accurately reproduce the peaks in rates.
Strong winds (>7 m/s) were reported after 2000 UTC, where the minor degradation is
seen in polarimetric relations estimations. In the strong wind situations, particles have
more random motions and appear quasi-spherical, negatively impacting KDP (and ZDR).
Polarimetric-based accumulations are in good agreement with the gauge estimate whereas
the S(Z) relation underestimates the SWE amounts by about 40%. Additional examples of
polarimetric measurements of snow can be found in [99].
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ASOS accumulation estimate from the extinction coefficient measurements (black cross, co-located
with radar); 14 March 2017.

Remote Sens. 2022, 14, x FOR PEER REVIEW 22 of 33 
 

 

Polarimetric-based accumulations are in good agreement with the gauge estimate 
whereas the S(Z) relation underestimates the SWE amounts by about 40%. Additional ex-
amples of polarimetric measurements of snow can be found in [99]. 

 
Figure 17. KBGM radar RD-QVPs of (a) Z, (b) KDP, and (c) ZDR; the black dashed lines are isotherms, 
where the layer from −10 °C to −20 °C highlighted in magenta designates DGL; (d) profiles of SWE 
accumulations from the S(KDP, Z) (red line), S(KDP, Zdr) (green line), S(Z) (blue line), and KBGM 
ASOS accumulation estimate from the extinction coefficient measurements (black cross, co-located 
with radar); 14 March 2017. 

 
Figure 18. Instantaneous snowfall rates (mm h−1) (a) from the KBGM ASOS extinction coefficient 
estimates (black dashed curve; ground), and radar RD-QVP estimates from S(KDP, Z) (red line; 0.5 
Figure 18. Instantaneous snowfall rates (mm h−1) (a) from the KBGM ASOS extinction coefficient
estimates (black dashed curve; ground), and radar RD-QVP estimates from S(KDP, Z) (red line;
0.5 km AGL), S(KDP, Zdr) (green line; 0.5 km AGL), S(Z) (blue line; 0.05 km AGL); respective SWE
accumulations (mm) (b) from; 14 March 2017.
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3.4. Discussion

Although the results of polarimetric estimation of snow in a limited number of cases
are encouraging, they reveal obvious challenges as well. There is little doubt that the
use of multiparameter polarimetric relations significantly reduces the impact of the PSD
variability in snow. However, the S(KDP, Z) estimates are sensitive to the variability of
particle shapes and orientations which are not known apriori. This variability does not
affect the S(KDP, ZDR) estimates but these are much more affected by the uncertainty in
snow density or degree of riming. A common problem for both polarimetric relations is
that they cannot be directly applied for heavily aggregated dry snow where KDP and ZDR
are vanishingly small and noisy. If KDP drops below 0.01–0.03 deg/km and ZDR are below
0.2–0.3 dB, the polarimetric estimates of snow become very unstable. This may limit the
efficiency of polarimetric radar estimates in “warm” snow with temperatures just slightly
below 0 ◦C. One possibility to address this issue is to resort to the polarimetric estimates of
snow rate at higher altitudes and lower temperatures where KDP (or ZDR) are sufficiently
high and project these estimates down to the surface assuming either conservation of the
snow flux or predicting its downward evolution using simple cloud models as discussed
in [112]. An alternative option is to switch to the S(Z) relation optimized for a certain snow
type in areas of unreliable KDP and ZDR [83]. Note that the polarimetric snow relations are
expected to perform better at shorter radar wavelengths (e.g., at C and X bands) for which
KDP is higher and can be measured more reliably compared with S band.

Summarizing, we can conclude that, as opposed to the polarimetric methods for
rainfall estimation which are quite mature and operationally usable, the algorithms for
polarimetric snow measurements are still in their infancy and require substantial refinement
and testing on a larger number of snow events.

4. Operational Implementation—MRMS QPE

Since the polarimetric upgrade of the US WSR-88D network, several QPE methodolo-
gies based on polarimetric radar variables have been developed for operations in the US
National Weather Service (NWS). On the single radar applications, a hydrometeor classifi-
cation algorithm (HCA, [113]) and an R(Z, ZDR), R(KDP) and R(Z) synthetic QPE [8] were
developed and implemented in the operational WSR-88D Open Radar Product Generation
(ORPG) system. The single radar synthetic QPE was later upgraded to an R(A) [42], R(Z,
ZDR), R(KDP) and R(Z) synthetic QPE. On the multi-radar mosaic applications, a dual-pol
(DP) radar quality control (dpQC) [114,115] to remove non-hydrometeor echoes and an
R(A), R(KDP) and R(Z) synthetic QPE [26,46,47] were implemented in the Multi-Radar
Multi-Sensor (MRMS, [9]) system. This section provides an overview of the DP radar
synthetic QPE in the MRMS system.

Figure 19 shows an overview flowchart of the MRMS DP synthetic QPE process. The
input data include DP radar moments and environmental data such as the 3D temperature
field, freezing level height, and surface wet bulb temperature. The dpQC includes a simple
correlation coefficient (ρhv) filter to separate hydrometeor (high ρhv) and non-hydrometeor
(low ρhv) areas and a set of heuristic rules to handle exceptions to the simple ρhv filter. Such
exceptions include areas of hail, non-uniform beam filling (NBF) and melting layer (ML)
that have low ρhv values. Another exception is random clutter and biological pixels with
high ρhv values. The dpQC uses 3D reflectivity structure and environmental data to protect
hail, NBF, and ML areas from being removed by the simple ρhv filter, and it uses spatial
filters and vertical and horizontal consistency checks to remove random non-precipitation
pixels that exhibit high ρhv values. The dpQC removes more than 99% of non-hydrometeor
echoes with very high computational efficiency [114].
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Figure 19. An overview flowchart of the MRMS DP radar synthetic QPE.

After the dpQC, the differential phase ΦDP field is further processed for additional
quality assurance. The ΦDP processing include four steps. The first step includes a speckle
filter and a ρhv screening. The speckle filter checks for each ΦDP pixel and counts a number
of non-missing ΦDP pixels in a 4.5◦ × 2.25 km box centered at the given pixel. If the number
is less than 50% of the box total, then the given ΦDP pixel at the center is removed. A
ρhv > 0.8 filter is applied to remove noisy and unreliable ΦDP data potentially associated
with hail, severe NBF, or other residual contaminations after the dpQC. The second step
unfolds ΦDP field based on the gate-to-gate ΦDP change and adjusts the unfolded ΦDP field
to assure a monotonic increase trend with range. The third step applies a 6.25 km radial
running mean through all non-missing ΦDP pixels to further reduce random errors and
fluctuations. Finally, a linear interpolation along the radial is applied to fill in any gaps in
the ΦDP field.

The specific differential phase KDP is calculated via a local linear fitting to ΦDP along
the radial direction in areas where hail might be present. Specific attenuation A along the
propagation path (r1, r2) in rain is calculated following Equations (2)–(6). The distance r1
corresponds to the nearest gate to the radar with precipitation and r2, to the last precipitation
gate or the gate just below the bottom of the apparent melting layer (ML), whichever is
closer to the radar. The ML is delineated using a scheme similar to [116] but its bottom
and top were further expanded based on ρHV and Z to encompass all pixels potentially
impacted by the ML. Pixels in [r1, r2] with potential hail contamination are excluded from
the PIA calculation.

In the scheme currently implemented on the WSR-88D network, the factor α in
Equation (6) is estimated from the 0.5◦ tilt data using the “ZDR-slope” K:

α = −0.75K + 0.049 (24)
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where K is a linear fit to the median ZDR values of each 2 dBZ reflectivity bin within
the 20–50 dBZ range (Figure 20). Equation (24) was obtained from disdrometer data
and supported by an analysis of ~10 events with a wide spread of moderate to heavy
precipitation events from different geographical regimes. Figure 20 illustrates the process of
α calculation. For the mesoscale convective system (MCS) near the KHTX WSR-88D radar
(Figure 20a–c) on 11 December 2021, there was an apparent increase in ZDR with increasing
Z, indicating the presence of large rain drops in the convective system. The ZDR-slope was
relatively large (K = 0.048 dB/dBZ) and α was relatively low (0.0126 dB/deg) and close to
those for convective rain [42,46,47]. For the Hurricane Ida case near the KMOB WSR-88D
radar on 30 August 2021 (Figure 20d–f), the ZDR-slope was relatively flat (K = 0.017) and α

(0.0361 dB/deg) was higher and closer to a tropical-type rain value.
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Figure 20. Reflectivity Z (a,d), differential reflectivity ZDR (b,e) and Z–ZDR scatter plot (c,f) from
KHTX (a–c) at 1600 UTC 11 Dec. 2021 and KMOB (d–f) at 0335 UTC 30 Aug. 2021. The black dots in
(c,f) indicate median ZDR values, and the white dashed lines represent the linear fit to the median
ZDR vs. Z.

Equation (24) is used to estimate α only if there are sufficient Z–ZDR data pairs in
each 2-dBZ bin between 20 and 50 dBZ. If not enough Z–ZDR data pairs are found in the
20–50 dBZ interval, the number of Z–ZDR pairs in each 2-dBZ bin between 10 and 30 dBZ
are checked. If significant data samples were found in the 10–30 dBZ interval, then the
precipitation is considered pure stratiform and a default stratiform α (0.035 dB/deg) is
applied. Otherwise, a new linear fit may be applied to the median ZDR values within the
10–40 dBZ range if sufficient Z–ZDR pairs were found in that range. If insufficient data pairs
were found in the 10–40 dBZ reflectivity range, the precipitation is considered sporadic. A
default convective (0.015 dB/deg) or stratiform (0.035 dB/deg) α is applied depending on
the reflectivity intensities.

Once α is obtained and A calculated for each radar gate, precipitation rates are es-
timated from A on the 0.5◦ tilt in areas where reflectivity is below 45 dBZ (an adaptable
parameter) using Equation (7). The 45 dBZ constraint is used to prevent R(A) from potential
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hail contamination. Above 50 dBZ (an adaptable parameter), two R(KDP) relationships are
applied depending on the correlation coefficient, ρhv, field:

R(KDP) = 29.0|KDP|0.77 if ρhv < 0.97 (25)

R(KDP) = 44.0|KDP|0.82 if ρhv > 0.97 (26)

Equation (25) was derived using disdrometer measurements in the proximity of
selected hailstorms in central Oklahoma, and Equation (26) provided optimal performance
in heavy rain with large drops [6], also in central Oklahoma. Between 45 and 50 dBZ, a
linear combination of R(A) and R(KDP) is applied to create a smooth transition between
the two rates. The R(A) and R(KDP) are calculated from the 0.5◦ tilt currently with two
additional constraints applied: (1) the beam blockage < 90% and (2) ∆ΦDP ≥ 3◦. If the
blockage ≥ 90% or ∆ΦDP < 3◦ at a given radial, the rate values for all the pixels in that
radial are set to missing and R(Z), based rates are applied in the synthetic process at a later
time (Figure 19).

Precipitation rate fields estimated via R(A) and R(KDP) from individual radars are
mosaicked through a physically based scheme shown in [117]. Since R(A) is only valid
below the melting layer, the mosaic may have gaps in areas far away from the radars.
Figure 21a shows such a gap between KHTX and KMRX radars. To fill in these gaps, a
multiple R(Z), based QPE (“Q3RAD”, Figure 21b) described in [9] was applied. A flowchart
of the Q3RAD QPE is shown in the right half of Figure 19. After the QC, a 2D hybrid scan
reflectivity (HSR) field is derived from the lowest radar bins with less than 50% blockages,
and the reflectivity bins with blockages greater than 10% are adjusted to compensate for
the power loss. The apparent melting layer is delineated for all the tilts based on a scheme
similar to [118] and a vertical profile of reflectivity (VPR) correction was applied to the HSR
field within and above the melting layer [61]. The HSR fields from individual radars are
then mosaicked based on the methodology developed in [117]. A precipitation type field
of seven categories (warm stratiform rain, cool stratiform rain, convective rain, tropical-
stratiform rain mix, tropical-convective rain mix, hail, and snow) is generated using an
automated precipitation classification described in [9]. Finally, multiple R(Z) relationships
are applied to the HSR field according to the precipitation types to obtain the Q3RAD rate.
The main Q3RAD R(Z) relationships applied in the warm season are as follows:

Stratiform rain: Rstra = max (0.0365 Z0.625, 0.1155 Z0.5); (27)

Convective rain: Rconv = 0.017 Z0.714; (28)

Tropical rain: Rtrop = 0.010 β Z0.833 (29)

where β is a rate multiplier ranging from 1.0 to 1.5 depending on the month of the year
and the proximity to frequent hurricane zones [9,118]. For the coastal areas of the Gulf of
Mexico and Atlantics and southeastern US, β can be as high as 1.45 for September and
1.5 for October. The convective R(Z) was capped at a value that ranges from 53.8 mm/h
to 150 mm/h depending on the climatological region and real-time hail size estimation.
The cap is lower in areas of continental rain regime with severe hail and higher in areas of
maritime warm rain and hurricanes.

Figure 21c,d show the example of the HSR mosaic and precipitation type fields cor-
responding to the Q3RAD rate in Figure 21b. The final dual-pol radar synthetic QPE
(“Q3DP”) is shown in Figure 21e,f which shows the contributing sources of the rates to
the Q3DP from different relationships. The dark blue areas in Figure 21f indicate where
Q3RAD fills in when the radar beam intersects or overshoots the melting layer and light
blue when ∆ΦDP < 3◦. The yellow areas indicate a transition zone (default width: 50 km)
near the outer boundary of R(A) where a weighted mean of the R(A) and R(Z) rates is
applied to prevent discontinuities between the two. The red areas indicate where R(KDP) is
applied and orange the linear transition between R(A) and R(KDP). Finally, an evaporation
correction is applied to the mosaicked precipitation rate field based on the methodology



Remote Sens. 2022, 14, 1695 27 of 33

provided by Martinaitis et al. [119]. The correction factor is a function of the rate, the
height of the radar estimate, and atmospheric properties between the radar data height
and the ground. The correction helps reducing false light precipitation in the radar QPE
due to virga. Figure 21g shows the same Q3DP rate field as in Figure 21e but with the
evaporation correction.

Remote Sens. 2022, 14, x FOR PEER REVIEW 27 of 33 
 

 

methodology provided by Martinaitis et al. [119]. The correction factor is a function of the 
rate, the height of the radar estimate, and atmospheric properties between the radar data 
height and the ground. The correction helps reducing false light precipitation in the radar 
QPE due to virga. Figure 21g shows the same Q3DP rate field as in Figure 21e but with 
the evaporation correction. 

 
Figure 21. (a) R(A) + R(KDP) rate mosaic, (b) multiple R(Z) rate, (c) hybrid scan reflectivity mosaic, 
(d) precipitation type, (e) the R(A) + R(KDP) + R(Z) DP synthetic QPE, (f) the DP synthetic QPE cate-
gories, and (g) the DP synthetic QPE with evaporation correction, all valid at 1600 UTC 11 December 
2021. 

Q3DP was evaluated across CONUS during the period of 15 September–31 October 
2018. The Community Collaborative Rain, Hail and Snow Network, www.cocorahs.org/, 

Figure 21. (a) R(A) + R(KDP) rate mosaic, (b) multiple R(Z) rate, (c) hybrid scan reflectivity mosaic,
(d) precipitation type, (e) the R(A) + R(KDP) + R(Z) DP synthetic QPE, (f) the DP synthetic QPE
categories, and (g) the DP synthetic QPE with evaporation correction, all valid at 1600 UTC 11
December 2021.



Remote Sens. 2022, 14, 1695 28 of 33

Q3DP was evaluated across CONUS during the period of 15 September–31 October
2018. The Community Collaborative Rain, Hail and Snow Network, www.cocorahs.org/,
(accessed on 1 February 2022) (CoCoRaHS) rain gauges were used to compare the perfor-
mances of the Q3DP and Q3RAD 24-h QPEs. The statistic scores for both QPE techniques
for different rainfall categories are summarized in Table 2. The categories are subjectively
defined as very light (VL: G < 0.5 in.), light (L: 0.5 ≤ G < 1 in.), moderate (M: 1 ≤ G < 2 in.),
heavy (H: 2 ≤ G < 4 in.), and very heavy (VH: G ≥ 4 in.).

Q3DP showed a reduction in systematic bias and random errors over Q3RAD, es-
pecially for the heavy amounts higher than 2 in., Q3RAD had a 19% overestimation bias
in the VL rain and 18%, 20%, and 19% underestimation biases in the M, H, and VH rain,
respectively. Q3DP reduced the biases by 15%, 6%, 12%, and 16% for VL, M, H, and VH
categories, respectively, and remained the same for the L category. A similar trend was
found in the MAE score, where Q3DP reduced the errors for VL, M, H, and VH categories
but slightly increased the error in the L category. For the correlation coefficient, Q3DP was
about the same as Q3RAD in the VL and L and was higher in the M–VH categories. Q3DP
showed a significantly reduced uncertainty with respect to Q3RAD for rainfall amounts.
The reduced uncertainty in Q3DP was also reflected in its lower MAEs/fMAEs for the H
and VH categories. Q3DP reduced the fMAE by 6%, 7%, and 11% for the VL, H, and VH
categories, respectively, while the fMAEs of Q3DP and Q3RAD for the L and M categories
remained similar.

Table 2. Mean bias ratio (MBR), correlation coefficient (CC), mean absolute error (MAE) and fractional
MAE of the Q3RAD and Q3DP 24 h QPEs for predefined 24 h rainfall categories. The bold numbers
indicate the better scores among the two products.

Category VL L M H VH

QPE-G pairs 53,478 13,796 9834 3404 710

G-mean (in) 0.17 0.71 1.37 2.66 5.45

Q3RAD

MBR 1.19 0.91 0.82 0.80 0.81

CC 0.69 0.39 0.43 0.52 0.57

MAE (in) 0.09 0.21 0.38 0.78 1.73

fMAE (%) 52.94 29.58 27.74 29.32 31.74

Q3DP

MBR 1.04 0.91 0.88 0.92 0.95

CC 0.68 0.39 0.49 0.59 0.71

MAE (in) 0.08 0.22 0.36 0.59 1.14

fMAE (%) 47.06 30.99 26.28 22.18 20.92

5. Conclusions

A primary outcome of the radar rainfall estimation research during last two decades
is the realization that the polarimetric methodologies based on the use of specific attenu-
ation A and specific differential phase KDP have undeniable benefits compared with the
techniques that utilize either a single radar reflectivity factor Z or a combination of Z
with differential reflectivity ZDR. This is attributed to lower sensitivity of the R(A) and
R(KDP) relations to the DSD variability and immunity of the estimates of A and KDP to
the radar calibration errors, attenuation in rain, partial beam blockage, and impact of wet
radome. These benefits are well-proven for all three S-, C-, and X-microwave frequency
bands at which polarimetric weather surveillance radars operate. It is demonstrated that
the composite rainfall algorithms utilizing R(A) relations for lower rain rates and R(KDP)
relations for heavier rain show the best performance. The A-based methods are particularly
advantageous at S band because the S-band R(A) relation is almost linear and can be utilized
in a wider range of rain intensities compared with C and X bands.

www.cocorahs.org/
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There is still room for additional optimization of the R(A) and R(KDP) algorithms to
further mitigate their residual sensitivity to the DSD variability. At S band, this must be
performed by optimizing the parameter α = A/KDP in the estimation of A and the multiplier
in the power-law R(KDP) relation.

Notable progress was achieved in mitigation of the impact of the “bright band” con-
tamination on the surface rainfall estimates at longer distances from the radar using
polarimetric VPR correction (PVPR) although these techniques require more testing and
refinement. Taking into the account the vertical profiles of reflectivity below the melting
layer and above, is a subject of ongoing research.

The algorithms for polarimetric measurements of snow were recently introduced and
show good promise as was demonstrated at S band. They utilize combinations of Z and
KDP or KDP and ZDR and may produce even better results at C and X bands due to higher
value of KDP at shorter radar wavelengths. A common problem for this methodology is a
reduced value of KDP in dry aggregated snow near the surface and the inherent uncertainty
related to the KDP dependency on the shapes and orientations of snowflakes.

The advanced polarimetric radar QPE methods utilizing the R(A), R(KDP), and R(Z)
relations were implemented on the operational network of the WSR-88D radars in the US
using the Multi-Radar Multi-Sensor (MRMS) platform that integrates rainfall estimates
from all operational radars and provides comparison of radar rainfall products with dense
networks of rain gauges.

With all the progress achieved during last two decades, a number of challenges
and opportunities remains. These include the need to improve the rainfall estimation
performance at longer distances from the radar, further development of the algorithms for
polarimetric quantification of snow, and more aggressive utilization of the methodologies
involving artificial intelligence/machine learning.
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