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ABSTRACT

Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation (QPE) radar only (Q3RAD),

Q3RAD local gauge corrected (Q3gc), dual polarization (Dual Pol), legacy Precipitation Processing System

(PPS), and National Centers for Environmental Prediction (NCEP) stage IV product performance were

evaluated for data collected east of the Rockies during the 2014 warm season. For over 22 000 radar QPE–

gauge data pairs, Q3RAD had a higher correlation coefficient (0.85) and a lower mean absolute error

(9.4mm) than the Dual Pol (0.83 and 10.5mm, respectively) and PPS (0.79 and 10.8mm, respectively).

Q3RAD performed best when the radar beam sampled precipitation within or above the melting layer be-

cause of its use of a reflectivity mosaic corrected for brightband contamination. Both NCEP stage IV and

Q3gc showed improvement over the radar-only QPEs; while stage IV exhibited the lower errors, the per-

formance of Q3gc was remarkable considering the estimates were automatically generated in near–real

time. Regional analysis indicated Q3RAD outperformed Dual Pol and PPS over the southern plains,

Southeast/mid-Atlantic, and Northeast. Over the northern United States, Q3RAD had a higher wet bias

below the melting layer than both Dual Pol and PPS; within and above the melting layer, Q3RAD exhibited

the lowest errors. The Q3RAD wet bias was likely due to MRMS’s overestimation of tropical rain areas in

continental regions and applying a high yield reflectivity–rain-rate relationship. An adjustment based on

precipitation climatology reduced the wet bias errors by ;22% and will be implemented in the operational

MRMS in the fall of 2016.

1. Introduction

Multi-Radar Multi-Sensor (MRMS) quantitative

precipitation estimation (QPE) products have been

produced for National Weather Service (NWS) opera-

tions since September 2014 (Zhang et al. 2014, 2016). As

part of a continuing effort to improve MRMS products,

extensive evaluations have been conducted for the

various regions across the United States as well as the

different seasons. A recent cool season QPE assessment

east of the Rocky Mountains highlighted radar pre-

cipitation estimate challenges related to brightband

contamination and radar beam overshoot of shallow

precipitation systems (Cocks et al. 2016). These chal-

lenges are especially relevant for single-radar-generated

QPE; however, amosaicked product, such as theMRMS

radar-only QPE (Q3RAD), can mitigate radar beam

overshoot primarily via the use of multiple radar inputs

for a given grid point. Further, the application of a
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vertical profile of reflectivity (VPR) correction in

MRMS (Zhang and Qi 2010) can mitigate melting layer

effects that were clearly illustrated via cool season per-

formance comparisons between Q3RAD and mo-

saicked dual polarization (Dual Pol) estimates, which

lacked an effective brightband correction (Cocks

et al. 2016).

During the warm season, both radar beam overshoot

and brightband contamination are less common as deep

convection and higher freezing levels are more preva-

lent. The logical follow-up to a cool season study was to

assess QPE performance east of the Rockies for the

2014 warm season to document strengths and weak-

nesses, the purpose of this study. As many previous

studies have documented, radar QPE assessments in-

volve intercomparisons of radar precipitation estimates

to rain gauge accumulations, and a number of limita-

tions must be considered (Wilson and Brandes 1979;

Krajewski et al. 2010). Ground clutter, blockage, and

nonmeteorological echoes contaminating the lower-

elevation scans, partial beam filling effects and in-

creased sample volumes at greater distances (Steiner

et al. 1999; Zhang et al. 2012), beam overshoot and

brightbanding effects (Smith et al. 1996; Zhang and Qi

2010), improper calibration, signal attenuation (Doviak

and Zrnić 2006; Rinehart 2010), and the use of improper

reflectivity–rain-rate (Z–R) relationships (Wilson and

Brandes 1979; Steiner et al. 1999) all can significantly

affect radar-derived precipitation estimates. On the

other hand, blockages and poor site placement (Sieck

et al. 2007; Fiebrich et al. 2010), undercatch due to wind

(Wilson and Brandes 1979; Sieck et al. 2007), power

outages preventing data transmission (Martinaitis 2008),

mechanical malfunctions, and telemetry and trans-

mission problems (Groisman and Legates 1994; Marzen

and Fuelberg 2005; Kim et al. 2009) can contribute to

gauge errors. Further, the typical surface area volume

of a radar pixel and a rain gauge can differ by as much as

eight orders of magnitude (Droegemeier et al. 2000).

With these considerations in mind, single-radar QPEs

along with mosaicked QPEs from the MRMS system

were assessed for precipitation events observed by

55 radars on 59 calendar days between 29 March

and 28 September 2014. These precipitation estimate

performances were compared to the forecaster quality-

controlled National Centers for Environmental Pre-

diction (NCEP) stage IV precipitation estimates. Unlike

the previous cool seasonQPE study, this assessment was

made in reference to the radar location, that is,

mosaicked and single-radar QPE were compared for

each radar location out to a distance of 230 km. The

reason was to determine if the advantages of a QPE

mosaic with a brightband correction for reflectivity

when compared with single-radar QPE were still rele-

vant during warm season precipitation events. This pa-

per is organized as follows: section 2 covers the data

methodology, section 3 covers the statistical results for

the entire domain east of theRockies, section 4 discusses

the statistical results for five predefined geographical

regions, and section 5 is a summary.

2. Data, methodology, and quality-control
measures

The criteria for choosing precipitation events for

evaluation was whether significant areas received rain

totals $25.4mm (1.00 in.) and whether all five pre-

cipitation products [MRMS, Dual Pol, Precipitation

Processing System (PPS), Q3RAD local gauge cor-

rected (Q3gc), and stage IV] data were available within

the MRMS archive system. For the evaluated pre-

cipitation events, upper-air, numerical model, and radar

data combined with radar rainfall and gauge totals were

evaluated for 24-h periods ending at 1200 UTC. Hourly

and 24-h radar-derived estimates and gauge accumula-

tions were compared at corresponding grid points

(henceforth called R/G pairs). Gauge data consisted of

24-h precipitation data from the Community Collabo-

rative Rain, Hail and Snow Network (CoCoRaHS) and

hourly data from Hydrometeorological Automated

Data System (HADS).

The following precipitation estimate products were

evaluated: MRMS Q3RAD, Q3gc, NCEP stage IV,

single-radar Dual Pol, and single-radar legacy PPS.

MRMS Q3RAD estimates are derived from quality-

controlled reflectivity mosaics corrected for brightband

contamination.MultipleZ–R relationships were applied

according to the MRMS surface precipitation type at

each grid cell based on vertical profiles of reflectivity and

environmental data (Zhang et al. 2016). Q3gc estimates

are Q3RADestimates locally adjusted by hourly HADS

gauge data using an inverse distance weighting (IDW)

scheme. A description of these two MRMS products

can be found in Cocks et al. (2016) and Zhang et al.

(2011, 2016).

The 24-h NCEP stage IV data were the mosaic of

continental U.S. River Forecast Center (RFC) estimates

that utilized manual quality control (QC) of radar, sat-

ellite, and gauge data. Nelson et al. (2016) provided a

summary of the process involved in making NCEP stage

IV estimates. However, it is important to note that that

the radar portions of the stage IV analysis were not al-

ways comprised of the same radar-only QPE product

(e.g., PPS). For example, RFCs may use PPS, Q3RAD,

satellite precipitation estimates, a gauge-only analysis,

or, more recently, Dual Pol or even a combination in

762 JOURNAL OF HYDROMETEOROLOGY VOLUME 18

Unauthenticated | Downloaded 10/11/22 06:20 AM UTC



order to maximize the accuracy of the analysis (G. Story

and E. Jones 2016, personal communication; Wardlow

et al. 2012). Hence, different sections of the contiguous

U.S. stage IV analysis may incorporate different radar-

only QPEs, albeit gauge corrected. Nonetheless, the

forecaster QC of the stage IV analysis makes it the

standard by which the QPEs in this study may be mea-

sured against.

TheDual PolQPEalgorithmutilizes a fuzzy-logic-based

radar echo classifier, the hybrid-hydrometeorological

classification algorithm (HHC), to assign rain rates based

upon specific differential phase KDP, differential re-

flectivity ZDR, and reflectivity Z. A more comprehensive

description can be found in Giangrande and Ryzhkov

(2008) and Berkowitz et al. (2013). The legacy PPS esti-

mates utilize a single Z–R relation for the radar’s entire

field of view for each volume scan, and the Z–R relation

can be changedwhen deemed necessary by the operational

forecaster. A more detailed description of the PPS algo-

rithm can be found in Fulton et al. (1998).

Comparisons between a mosaic and single-radar QPE

data usually involve resolution and coordinate system

differences, and this was the case for this study. Single-

radar QPE was in polar coordinates while Q3RAD,

Q3gc, and stage IV QPE were in Cartesian coordinates.

Further, there are resolution differences among the

different products. For example, the NCEP stage IV

QPE is distributed in 4km3 4km resolution inCartesian

coordinates. To better match the 1 km 3 1 km resolu-

tion of Q3RAD and Q3gc, the NCEP stage IV data

have been remapped, using a nearest neighbor ap-

proach, to 1 km3 1 km Cartesian grids for over 5 years.

Operational PPS estimates were available in 4 km 3 18
resolution, coarser than desired for comparison studies.

Similar to what was done with stage IV data, a higher-

resolution (1 km 3 18) version of PPS was generated

within MRMS by using the Z–R relations and the

Digital Hybrid Scan Reflectivity (DHR) data found in

Weather Surveillance Radar-1988 Doppler (WSR-88D)

level-III data. Operational Dual Pol precipitation

QPE fields, also available in WSR-88D level-III data,

had a higher resolution of 0.25 km 3 18. Rather than

attempt a lengthy regridding project for the Dual Pol

QPE fields, a simple test was first conducted. A com-

parison was made between R/G pairs for single-radar

Dual Pol (0.25 km 3 18, polar coordinates) QPE to the

same pairs transformed to 1 km 3 1 km Cartesian co-

ordinates to determine if the resolution and coordinate

differences significantly masked any performance

trends. The R/G pairs, a total of 4693, were collected

from 12 radars for over 50 precipitation events. The

scatterplots, shown in Fig. 1, were quite similar. While

there were some individual R/G pairs from the

higher-resolution data that showed some significant

differences from the lower-resolution data, because of the

location of the gauge along a very tight QPE gradient, the

overall difference between the two samples was small,

with only a slightly higher overestimate bias ratio for the

higher-resolution data (Fig. 1). The root-mean-square

error (RMSE) and mean absolute error (MAE) differ-

ences between the higher-resolution polar coordinate

Dual Pol data and that in lower resolution in Cartesian

coordinates were ,1mm. Differences in radar-to-gauge

bias ratios were only 0.05 while the correlation co-

efficients were identical. This test provided confidence

in making the comparisons between the mosaicked

QPE in Cartesian coordinates and the single-radar

QPE in polar coordinates when the data sample was

sufficiently large.

Precipitation estimates were compared to indepen-

dent 24-h accumulations from CoCoRaHS gauges,

which, from experience, were more consistent and

suitable. Further, these gauges serve as an independent

check for the MRMS Q3gc estimates, as only hourly

HADS gauges are used to correct the radar-only QPE.

As a minimal QC measure, both the radar-based

QPEs and the CoCoRaHS gauges were required to

be $2.5mm (0.01 in.) before including the R/G pair

into the analysis. To compare performances between

mosaic estimates and the single-radar QPEs, data

were evaluated for R/G pairs with a distance #230 km

of the radar location, the maximum range that pre-

cipitation estimates were created by the Dual Pol and

PPS QPE algorithms.

Performance statistics were stratified by 24-h

CoCoRaHS gauge totals, by distance from the radar,

and by the position of the radar beam with respect to the

melting layer. Dual Pol correlation coefficient (CC)

data, which are the correlation between the horizontal

and vertical power at zero time lag, were used to dif-

ferentiate regions of pure rain and mixed phase hydro-

meteors. In this data, the melting layer was generally

discerned as a ring of lower CC values, generally,0.97,

as precipitation events passed through a radar’s field of

view (Kumjian 2013). Hourly inspection of CC data for

each precipitation event provided an approximation of

the bottom of the melting layer and its minimum dis-

tance from the radar during a 24-h period. If the melting

layer was difficult to discern, nearby rawinsonde or

model data were used. The R/G pairs were then strati-

fied into regions where precipitation was generally be-

low or within the melting layer. With the exception of

the early warm season cases, inspection of precipitation

events indicated that the top of the melting layer was

often located at distances greater than 180 km from the

radar, a region where QPE underestimates were a little
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more prevalent. As an approximation, the authors

considered distances .200 km as the region where a

significant portion of the radar beam was sampling

within the ice region. Hence, this distance was used to

evaluate the QPE impacts when the radar beam was

generally above the melting layer.

Statistical measures used in the evaluations were

mean bias ratio, defined as the ratio of the gauge total to

radar estimate, RMSE, MAE, and correlation co-

efficient. Hourly HADS data were quality controlled

with the same measures used in Cocks et al. (2016) and

then used to diagnose error trends as well as QPE im-

pacts after algorithm adjustments. QPE evaluations

were evaluated for the entire area east of the Rockies as

well as for five subregions: the southern plains, the

northern and central plains, the Great Lakes/Midwest,

the Northeast, and the Southeast/mid-Atlantic (Fig. 2).

3. Statistical analysis and results for all R/G pairs
east of the Rockies

Figures 3a–c show the scatterplots for allR/G pairs east

of the Rockies. TheDual Pol (PPS) RMSEs were 1.1mm

(2.1mm) higher than Q3RAD; Dual Pol (PPS) MAE

were 1.1mm (1.4mm) higher than Q3RAD. Q3RAD

exhibited a higher CC than Dual Pol (0.85 vs 0.83), which

was most notable for gauge totals less than 125.0mm; for

higher gauge totals Q3RAD had slightly more scatter

than Dual Pol. Gauge-to-radar estimate bias ratios in-

dicated Q3RAD had a slightly higher tendency to over-

estimate precipitation than Dual Pol (0.93 vs 0.96). Both

products exhibited a significantly better overall perfor-

mance than PPS, which exhibited an underestimate bias

ratio (1.13) and lower correlation (0.78). Overall, Dual

Pol QPE performance was much better than seen in the

previous cool season (Cocks et al. 2016). This was ex-

pected because of the deeper vertical extent of pre-

cipitation systems and less brightband contamination of

radar reflectivity due to the higher freezing levels during

the warm season. Figures 3d and 3e showed a perfor-

mance comparison betweenMRMSQ3gc and the NCEP

stage IVQPE. The forecaster quality-controlled stage IV

data had significantly lower RMSE (10.7mm) and MAE

(6.5mm) than MRMS Q3gc (12.0 and 7.2mm, respec-

tively); however, Q3gc and stage IV exhibited essentially

the same mean bias ratio and similar correlation co-

efficients. While the NCEP stage IV scatterplots were

better behaved with less variability than MRMS Q3gc, it

FIG. 1. Comparison between (a) 1 km 3 1 km Cartesian and (b) 0.25 km 3 1.08 polar coordinate Dual Pol

estimates usingmatchedR/G pairs. (c) Plot of low- vs high-resolution errors. In the legend,B,R, MAE, andC stand

for radar-to-gauge bias ratio, RMSE, MAE, and CC, respectively.
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was still remarkable how competitive Q3gc estimates

were considering it is an automated, quality-controlled

product available hourly versus themanual processes and

potential delays associated with stage IV.

Table 1 shows the Q3RAD, Dual Pol, PPS, Q3gc, and

NCEP stage IV statisticalmeasures forR/G pairs#230km

stratified by the following 24-h gauge totals: 1) light pre-

cipitation category with gauge totals ,12.7mm (0.50 in.),

2)moderate with totals$12.7mm (0.50 in.) and#38.1mm

(1.50 in.), 3) moderately high with totals .38.1mm

(1.50 in.) and #101.6mm (4.00 in.), and 4) high with

totals.101.6mm (4.00 in.). All of the products exhibited a

significant overestimate trend and similar RMSE and

MAEvalues for the light precipitation category, with stage

IV and Q3gc having the lowest errors. The overestimate

bias was likely due to a combination of the evaporation of

precipitation before reaching the ground and the gauge

wetting orifice effect, where small droplets may dry off

before a sufficient number coalesce and run into the gauge

bucket. For moderate precipitation totals, Q3RAD and

Dual Pol continued to exhibit more of an overestimate

bias than the other products, although the magnitude was

less than seen in the previous category. Stage IV had the

lowestRMSEandMAE followed byQ3gc,Q3RAD, PPS,

and Dual Pol.

For the moderately high and high precipitation

amount categories, both stage IV andQ3gc continued to

exhibit lower errors than the radar-only products

(Q3RAD, Dual Pol, and PPS). Stage IV RMSE and

MAE values were 34% less than the next best radar-

only estimate (Q3RAD). All of the products exhibited a

significant underestimate bias, with the worst being PPS.

Considering the potential gauge undercatch due to

strong winds within mesoscale convective systems

(MCSs), the underestimate bias ratios could be larger.

Q3RAD exhibited a lower RMSE and MAE than Dual

Pol for moderately high precipitation amounts; for high

precipitation amounts, the results were reversed. Al-

though stage IV and Q3gc precipitation estimates con-

sistently exhibited better results in RMSE and MAE

than the three radar-only products, there were some

slight inconsistencies. For example, the Q3gc over-

estimate bias ratio is slightly more than Q3RAD. This

was likely the result of comparing Q3gc estimates to

24-h CoCoRaHS gauge totals and the gauge-correction

process used in MRMS. Consider an automated gauge

and a CoCoRaHS gauge located within 15km, an arbi-

trary but sufficient distance, of each other in stratiform

rain. The two gauge totals will likely be quite similar

because of the typically homogenous distribution of rain

in stratiform precipitation events in the absence of terrain.

As outlined in Zhang et al. (2016), all the radar-only

QPEs within the sphere of influence of the automated

gauge will be corrected by the use of the IDW function.

FIG. 2. Regions and radars used for 2014 warm season evaluation.
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Once done, the gauge-corrected QPE will likely match

well to the CoCoRaHS gauge, as both gauges were

located in stratiform rain. Now, consider the same sit-

uation except the CoCoRaHS gauge was located within

convection while the automated gauge remained within

stratiform rain. The CoCoRaHS gauge will have a

relatively higher hourly total than the automated gauge

because of the higher rain rates typically present in

convection. The gauge-correction algorithm will use

the automated gauge total to reduce totals in the radar-

generated QPE within the sphere of influence (where

convection was present) via the IDW function. There-

fore, when the gauge-corrected QPE is compared to

the CoCoRaHS gauge, it will likely result in an un-

derestimate bias ratio. Finally, consider when the au-

tomated gauge is located where convection was present

but the CoCoRaHS gauge was within stratiform rain.

Now, the automated gauge will have a relatively higher

hourly total than the CoCoRaHS gauge. In this case,

the radar-only QPE within the sphere of influence of

the automated gauge will be increased. This means an

overestimate bias would result when Q3gc is compared

to the CoCoRaHS gauge. Overall, the degradation in

bias ratio caused by this type of an effect should be

small when adequate numbers of automated gauges are

available. This was corroborated by the very small

degradation observed when the Q3gc bias ratio was

compared to that of Q3RAD (Table 1).

Finally, the stage IV and the Dual Pol estimates had

essentially the same bias ratio for both of the higher-

precipitation categories; it may seem surprising that the

stage IV estimate did not have a significantly better bias

ratio than Dual Pol. However, as previously mentioned,

stage IV estimates may utilize various radar-only and

satellite precipitation estimates. What was important

was that the stage IV estimate had significantly lower

RMSE and MAE than Dual Pol because of the fore-

caster input and manually quality-controlled gauge-

corrected process. In fact, the overall results shown in

Fig. 1 indicated that as a whole the gauge-corrected

products performed better than the radar-only products.

It is important to note that time is required to produce

stage IV and Q3gc estimates because of the time re-

quirement for the gauge reports to be disseminated,

ingested, and for the QC process within the respective

algorithms to be completed. Hence, there is a time latency

before the gauge-corrected products are delivered to

field forecasters. However, Q3RAD, Dual Pol, and PPS

estimates are real-time products that are available to

forecasters much sooner. Further, the gauge-corrected

FIG. 3. Comparison between (a) Q3RAD, (b) Dual Pol, (c) PPS, (d) Q3gc, and (e) stage IV estimates vs 24-h totals from CoCoRaHS

gauges for all data east of the Rockies and at distances #230 km from the radar. R/G pairs have been color coded according to the

image legend. Outliers are denoted by dashed arrows withR/G values shown in box. One-to-one line is shown in solid black. Legend is

as in Fig. 1.
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products in a sense are a correction of the radar-only

product via the use of QC gauges. Hence, from this point

on, our focus will be on the radar-only products and their

performance in different geographical regions.

4. Regional statistical analysis and results

a. QPE assessment for southern plains,
Southeast/mid-Atlantic, and Northeast

Scatterplots and statistical measures for Q3RAD,Dual

Pol, and PPS were further examined for the previously

defined five regions. The results for R/G pairs #230km

over the southern plains, Southeast/mid-Atlantic, and

Northeast are shown in Fig. 4. Q3RAD exhibited signif-

icantly decreased scatter and generally more favorable

statistical measures over the southern plains and the

Northeast. Q3RAD RMSEs and MAEs were between

16% and 23% lower than Dual Pol for these regions.

Over the Southeast/mid-Atlantic, Q3RAD and Dual

Pol exhibited similar RMSE andMAEwith differences

of 1mm or less, although the former exhibited less

scatter. Dual Pol RMSEs and MAEs were approxi-

mately 10%–15% lower than PPS over the Northeast

and Southeast/mid-Atlantic. Little difference in RMSE

and MAE was noted between Dual Pol and PPS over

the southern plains. For all three regions, Q3RAD ex-

hibited a slight underestimate bias ratio but was still

within 10% of one; the Dual Pol bias ratio was nearly one

over the southern plains but exhibited underestimate bias

ratios over the Southeast/mid-Atlantic and Northeast.

PPS exhibited a distinct underestimate bias ratio for all

three regions.

Table 2 showed results for all three regions when R/G

pairs were stratified with respect to the melting layer.

Below the melting layer, Q3RAD showed better RMSE

and MAE than Dual Pol and PPS. Dual Pol exhibited

slightly better RMSE than PPS, although both products

had a similar MAE. PPS exhibited a significant un-

derestimate bias ratio while Dual Pol and Q3RAD had

bias ratios close to unity. Within and above the melting

layer, Q3RAD RMSEs (MAEs) were ;12% and 22%

(;14% and 30%) lower than Dual Pol, respectively.

These differences reflected the MRMS advantage of

using a VPR correction and a reflectivity mosaic. Fur-

ther, Dual Pol exhibitedRMSE (MAE) values that were

;6% and 18% (;6% and 14%) lower than PPS

for estimates made within and generally above the

melting layer.

One major factor for the large errors in PPS was most

likely the single Z–R relationship, which was often set

to the default convective type (Z 5 300R1.4), did not

well represent some warm rain events. The polarimetric

radar synthetic QPE in Dual Pol, based on hydrome-

teor classification (Giangrande and Ryzhkov 2008;

Berkowitz et al. 2013) and the adaptiveZ–R relationships

in Q3RAD based on precipitation classifications (Zhang

et al. 2016), on the other hand, better accounted for

the warm rain processes and resulted in less of an

underestimation.

It is interesting that the PPS underestimation bias is

lower in the melting layer than below or above. This was

because inflated reflectivities in the melting layer

somewhat compensated the underestimation from an

inadequate (underestimating) Z–R relationship and/or

the vertical variations of reflectivity. As a result, the

underestimation bias was reduced although for the

wrong reason. Above the melting layer, both single-

radar QPEs, PPS and Dual Pol, exhibited large un-

derestimation biases because the data used for rain-rate

calculations were from the ice region and the estimation

was not representative of what reached the ground. Such

discrepancies are mainly from 1) vertical variations of

hydrometeor phase and drop size distributions and

2) inaccurate relationships between the radar variables,

obtained in ice regions, and the liquid water content.

In addition to melting layer and radar sampling chal-

lenges, other error factors included calibration biases

and partial beam blockage. An example of a ZDR

TABLE 1. Number of R/G pairs, radar-to-gauge bias ratio,

RMSE, and MAE for Q3RAD, Dual Pol, PPS, Q3gc, and stage IV

estimates stratified by 24-h gauge amount. Values in boldface de-

note the lowest RMSE and MAE results for a given category.

Product R/G pairs Bias RMSE (mm) MAE (mm)

G , 12.7mm (0.50 in.)

Q3RAD 8803 1.69 7.0 4.6

Dual Pol 1.61 7.9 5.0

PPS 1.43 6.7 4.3

Q3gc 1.47 5.7 3.6

Stage IV 1.41 5.5 3.3
12.7 (0.50) # G , 38.1mm (1.50 in.)

Q3RAD 8240 1.18 12.2 8.7

Dual Pol 1.11 14.3 10.3

PPS 0.96 12.7 9.6

Q3gc 1.08 9.7 6.5

Stage IV 1.05 9.1 6.2

38.1 (1.50) # G , 101.6mm (4.00 in.)

Q3RAD 4667 0.97 21.9 16.4

Dual Pol 0.94 23.6 18.5

PPS 0.80 25.6 20.6

Q3gc 0.93 16.6 12.5

Stage IV 0.93 14.5 10.8

G $ 101.6mm (4.00 in.)

Q3RAD 562 0.83 45.2 36.9

Dual Pol 0.85 42.8 33.2

PPS 0.65 56.3 47.2

Q3gc 0.81 39.5 31.2

Stage IV 0.84 32.6 24.5
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calibration issue and its impact on theDual PolQPEwas

illustrated in Fig. 5. During the precipitation event, the

KEWX (Austin, Texas) radar exhibited a negative ZDR

bias; comparison with neighboring radars suggested

the mean offset was ;0.40dB. This negative ZDR bias

resulted in a significant overestimation bias in the Dual

Pol estimate (green and blue circles in Fig. 5) where the

R(Z,ZDR) relationshipwas applied since the rain ratewas

proportional to Z23:43
DR (Giangrande and Ryzhkov 2008).

The ZDR accuracy is expected to improve as the Radar

Operations Center (ROC) continues to develop ways to

mitigate the ZDR calibration error (Zittel et al. 2015).

Figure 6 illustrates the effects of partial blockage and

brightband impacts on single-radar QPEs. Figure 6

showed 24-h accumulations and radar estimate versus

gauge scatterplots for PPS and Dual Pol for a rainfall

event that passed over the KGYX (Portland, Maine)

radar on 13 and 14 August 2014. This particular pre-

cipitation event was one that affected portions of the

mid-Atlantic and Northeast coast over a 2-day period

and was associated with substantial rainfall totals, some

over 200mm (8.0 in.), reminiscent of tropical-like rain-

fall events. Partial beam blockage was clearly seen in

both PPS and Dual Pol QPEs south and southeast of the

radar (Figs. 6a–b) where many of the higher un-

derestimates (warm-colored bubbles) were found. The

strong underestimation was also apparent in the scat-

terplots of PPS (Fig. 6c) and Dual Pol (Fig. 6d) versus

gauges, except for some points within the brightband

areas. Overall, the Dual Pol estimates exhibited less of

an underestimate bias ratio and lower RMSE and MAE

than PPS. In turn, Q3RAD (not shown) had a lower

underestimate bias ratio (50% less) and lower RMSE

(25%) and MAE (30%) than Dual Pol. New techniques

using specific attenuation R(A) (Ryzhkov et al. 2014;

Wang et al. 2014) have shown great potential in miti-

gating radar QPE underestimates in partial beam

blockage, and the operationalMRMS radar-onlyQPE is

expected to be upgraded with the new techniques by the

warm season of 2017.

FIG. 4. (left) Q3RAD, (center) Dual Pol, and (right) PPS estimates vs 24-h totals from CoCoRaHS gauges. The results are from the (top)

southern plains, (middle) Southeast/mid-Atlantic, and (bottom) Northeast. Legend is as in Fig. 1.
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b. QPE assessment for Great Lakes/Midwest and
northern/central plains

Figure 7 shows the QPE assessment for the Great

Lakes/Midwest and northern/central plains. In both

regions, Q3RAD had a tighter grouping of data than

bothDual Pol and PPS for precipitation totals,75mm;

however, Q3RAD also exhibited more of an over-

estimate bias than both Dual Pol and PPS. Over the

Great Lakes/Midwest region, Q3RAD, Dual Pol, and

PPS RMSE and MAE differences all were within 1mm

of each other, although PPS exhibited appreciably

more scatter. PPS had the best bias ratio in both re-

gions and it exhibited lower RMSEs and MAEs in the

northern/central plains. This result indicated that the

default Z–R relationship (Z 5 300R1.4) often used in

PPS well represented the drop size distribution in most

of the precipitation systems observed in the northern/

central plains within this study.

Table 3 showed the radar-only product performance

for both geographical regions segregated by the melting

layer. Q3RAD exhibited a large wet bias ratio in each

category due to a potential overclassification of tropical

rain, a topic to be discussed shortly. Both PPS and Dual

Pol performed significantly better than Q3RAD below

the melting layer, with ;30% lower RMSE and MAE.

In the melting layer, there was a notable overestimation

bias for both Dual Pol and PPS, a contrast to what was

observed the southern plains, Southeast/mid-Atlantic,

and Northeast. Q3RAD performed significantly better

than Dual Pol and PPS with at least;20% lower RMSE

and MAE. This was probably due to lower melting

layers and more intense bright bands at these higher

latitudes causing artificially inflated rain rates in PPS

that did not have a brightband correction for reflectivity.

Dual Polmitigates the impact of the bright band onQPE

by using the multiplication factors of 0.6 and 0.8 applied

to the default convective Z–R relationship for hydro-

meteor classifications of wet snow and graupel, re-

spectively. However, this correction was not able

to account for the spatial variations in the bright-

band intensity. An example of Dual Pol QPE over-

estimation associated with the melting layer is shown in

Fig. 8. Hourly Dual Pol QPE from KOAX (Omaha,

Nebraska) ending at 0300 UTC 4 June 2014 showed a

number of overestimates with respect to gauges (i.e., the

blue dots in the yellow oval, Fig. 8a) northeast of the

radar, where Dual Pol correlation coefficient (not

shown) clearly indicated the existence of the melting

layer. The melting layer character was also apparent in

the KOAX reflectivity at 0230 UTC (Fig. 8b, red oval),

which was at least 5.0 dBZ higher than KDMX (Des

Moines, Iowa) observations (Fig. 8c, red oval). Another

contributing factor to the overestimation was calibration

bias. Using the same method used in Cocks et al. (2016),

the calibration between KOAX in the equidistant re-

gions to its neighboring radars revealed a positive bias

between 1.0 and 1.5 dBZ in KOAX. Such a calibration

bias would have an impact on the Q3RAD and PPS

estimates as well.

For estimates above the melting layer, Q3RAD

exhibited ;7% (;5%) lower RMSE (MAE) than PPS.

Further, PPS exhibited a ;19% (;24%) lower RMSE

(MAE) than Dual Pol. The higher Dual Pol QPE error

was likely related to an empirical relationship of 2.8

times the default convective Z–R relationship applied

TABLE 2. Number of R/G pairs, radar-to-gauge bias ratio,

RMSE, andMAE for Q3RAD, Dual Pol, and PPS estimates made

below, generally within, and near the top or above themelting layer

for all the precipitation events found within the southern plains,

Southeast/mid-Atlantic, and Northeast. Values in boldface denote

the lowest RMSE and MAE results for a given category.

Product R/G pairs Bias RMSE (mm) MAE (mm)

Below melting layer

Q3RAD 5261 1.00 15.0 9.7

Dual Pol 0.93 16.4 10.3

PPS 0.79 17.1 10.5

Within melting layer

Q3RAD 5030 0.93 14.1 9.0

Dual Pol 0.94 16.0 10.5

PPS 0.88 17.0 11.2

Near top of or above melting layer

Q3RAD 2886 0.91 14.5 8.8

Dual Pol 0.92 18.7 12.5

PPS 0.61 22.7 14.5
FIG. 5. Dual Pol estimates vs 24-h totals fromCoCoRaHS gauges

for the 24-h period ending at 1200 UTC 26 May 2014. The data

collected were centered upon the KEWX WSR-88D. Legend is as

in Fig. 1.
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above the top of the melting layer. The large over-

estimation resulted in discontinuities that were frequently

observed in the top of themelting layer.An example of this

can be seen along the white dashed circle in Fig. 6b, and

this discontinuity between estimates within and above the

melting layer is discussed in Berkowitz et al. (2013). The

ROC released software build 15.0 to theWSR-88D field in

the spring of 2015 in order to mitigate this overestimate

tendency by 1) changing some of the logic defining the top

of the melting layer and 2) giving forecasters the option to

adjust the application factor (default5 2.8) above the top

of the melting layer to a value considered more represen-

tative (Warning Decision Training Branch 2014).

Since a large percentage of the precipitation events in

the Great Lakes/Midwest and northern/central plains

had vigorous convection, some of the overestimate bias

observed in Q3RAD andDual Pol estimates were likely

due to wind-induced gauge undercatch (Wilson and

Brandes 1979; Neff 1977; Sieck et al. 2007) as well as hail

contaminating reflectivity data. However, closer exam-

ination indicated some of the Q3RAD overestimation

was due to factors other than hail or high wind. Figure 9

showed the 24-hQ3RADprecipitation estimates ending

at 1200 UTC 28 August 2014. There were no reports of

hail or high winds from Storm Prediction Center local

storm reports or the Meteorological Phenomena Iden-

tification Near the Ground (mPING) project (Elmore

et al. 2014). Further, synoptic observations (not shown)

for the 24-h period indicatedwinds weremostly#5ms21,

although two stations indicated gusts to 10ms21 with

convection for one hourly observation. Therefore, er-

rors due to hail contamination and gauge undercatch

should be relatively insignificant. Yet, Q3RAD ex-

hibited an overestimate bias ratio (2.17) with RMSE

(MAE) of 51.9mm (37.2mm). Given the maximum

observed winds of 5–10m s21, the gauge undercatch

should be around 4%–10% (Duchon and Essenberg

2001; Sieck et al. 2007); therefore, this factor could not

account for all the overestimation observed with

Q3RAD. Further, the KOAX radar reflectivity was

generally within 1 dBZ of its neighboring radars so cal-

ibration error could not account for error as well. An

analysis of the MRMS surface precipitation type in-

dicated that the primary classes identified were tropical

stratiform or tropical convective for the hours with the

largest errors. The model data–derived probability of

FIG. 6. The 24-h accumulation of (a) PPS and (b) Dual Pol QPE and accompanying radar estimate vs 24-h

gauge totals scatterplots for (c) PPS and (d) Dual Pol for the period ending at 1200 UTC 14 Aug 2014. In

(a) and (b), solid white lines denote span of partial blockage around KGYX. Dashed white lines in (b) denote

the artificial boundaries created by the different methods the Dual Pol QPE algorithm calculates QPE within

and above the melting layer.
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warm rain (POWR; Zhang et al. 2016) had values

generally.0.8 within the region. As a result, the tropical

Z–R relationship with an enhancing factor greater than

1.0 was applied even though the actual precipitation was

more continental convective in nature. Such mis-

classifications were observed in other events and were a

major contributor to the Q3RAD overestimation in the

northern/central plains and Great Lakes/Midwest dur-

ing the warm season. In many events identified as

tropical, some gauges (especially in the warm and moist

sections) did exhibit high rainfall totals, while many

others did not support the predominance of tropical

convection. The difference indicated high spatial vari-

abilities of drop size distributions in summertime MCSs

at higher latitudes and the deficiency of the Q3RAD

precipitation classification based on mean vertical pro-

files of reflectivity (Xu et al. 2008) and POWR (Grams

et al. 2014) in capturing such variabilities.

An adjustment to the Q3RAD tropical rain-rate re-

lationship was recently developed to mitigate the large

wet bias in the central and northern continental United

States. The adjustment is applied to the empirical en-

hancing factor amax that Q3RAD used to boost tropical

rain rates. Factor amax is a function of time (Fig. 10a)

based on Atlantic tropical cyclone climatology with

values of 1.0 between December and May, but in-

creases during the hurricane season to a peak value of

1.5 by mid-September. This factor was applied to trop-

ical precipitation over the contiguous United States

east of 1008W (Zhang et al. 2016) regardless of latitudes

or the proximity to the ocean. However, Parameter-

Elevation Regressions on Independent Slopes Model

(PRISM; Daly et al. 2008, 1994; www.prism.oregonstate.

edu) precipitation climatology, tropical cyclone track

TABLE 3. As in Table 2, but for events found within the

northern/central plains and Great Lakes/Midwest.

Product R/G pairs Bias RMSE (mm) MAE (mm)

Below melting layer

Q3RAD 3026 1.33 20.7 12.2

Dual Pol 1.06 13.6 8.3

PPS 1.00 14.8 9.6

Within melting layer

Q3RAD 4042 1.27 12.7 8.4

Dual Pol 1.32 16.3 10.5

PPS 1.22 16.4 9.8

Near top of or above melting layer

Q3RAD 2027 1.28 12.2 8.2

Dual Pol 1.39 16.1 11.3

PPS 0.93 13.1 8.6

FIG. 7. (a),(d) Q3RAD; (b),(e) Dual Pol; and (c),(f) PPS estimates vs 24-h CoCoRaHS gauge totals for the (top) Great Lakes/Midwest

and (bottom) northern/central plains. Legend is as in Fig. 1.
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history, and CoCoRaHS extreme daily precipitation

distributions for totals .279mm (11.0 in.; N. Doesken

2016, personal communication) all indicated the highest

risk of heavy tropical rainfall being over the southern

United States and coastal areas. To account for the spatial

variations of the likelihood of heavy tropical rain, a new

tropical rain rate enhancing factor a0
max was calculated:

a0
max 5 1:01 f (a

max
2 1), (1)

where f is a spatial variability factor as shown in Fig. 10b.

Figures 11a and 11b show 24-h Q3RAD estimates made

with the old and new amax from precipitation events in

the northern/central plains and Great Lakes/Midwest

between July and October 2014 and their comparisons

with quality-controlled CoCoRaHS and automated gauges,

a total of 6827R/G pairs. TheR/G pairs selected were those

in which a tropical classification was made during the 24-h

period and were primarily located in the region where

the f reduction factor was ,0.2. The results clearly

showed improved performance with the MAE reduced

by ;22% and the overestimation bias ratio reduced

by ;8.0%. This improvement was implemented in the

operational MRMS system in the fall of 2016.

Aside from the tropical rain rate enhancing factor

adjustment, recent efforts in the radar QPE using spe-

cific attenuation derived from Dual Pol radar observa-

tions showed good potential in better representing drop

size distributions and in reducing QPE errors (Ryzhkov

et al. 2014; Wang et al. 2014). A new synthetic MRMS

FIG. 9. (a) Q3RAD 24-h QPE accumulations with gauge-to-radar estimate bias bubbles and (b) the radar esti-

mate vs gauge scatterplot for the period ending at 1200 UTC 28 Aug 2014. The statistical measures legend is as in

Fig. 1.

FIG. 8. (a) KOAX 0300 UTC Dual Pol 1-h accumulations along with (b) KOAX and (c) KDMX digital hybrid scan reflectivity at

0230 UTC 4 Jun 2014. In (a), the region of overestimates within the melting layer was denoted by the dashed yellow oval. For (b) and (c),

the common region between both KOAX and KDMX is outlined in red.
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radar QPE based on R(A), R(KDP), and R(Z) is cur-

rently under evaluation and has shown the potential to

further improve warm season precipitation estimation in

the eastern United States.

5. Conclusions

Examination of 2014warm season precipitation events

east of the Rocky Mountains showed that Q3RAD

exhibited lower error and higher correlation with re-

spect to the validation gauges than Dual Pol, although

the differences between products were smaller than

seen during the previous cool season. Both products

performed better than PPS. The improved Dual Pol

performance was due to higher freezing levels and

deeper precipitation systems, and thus more usage of

R(Z,ZDR) andR(KDP) relationships that better capture

drop size distributions than R(Z) with empirical multi-

plier factors. The forecaster quality-controlled NCEP

stage IV estimates that integrated radar, gauge, satel-

lite, and precipitation climatology outperformed the

real-time radar-only products as expected. While stage

IV estimates showed less scatter and lower errors than

MRMS Q3gc, the performance of the latter was re-

markable considering it was an automated product

available hourly with potentially shorter delays. How-

ever, because of the manual QC associated with stage

IV precipitation analysis, these should continue to be

considered the standard for which all other quantitative

precipitation estimates are made.

Precipitation estimates stratified by 24-h gauge totals

indicated that all of the products exhibited an over-

estimate bias ratio for light precipitation, likely due

to precipitation evaporating before reaching the gauge

and gauge wetting losses. For gauge totals .101.6mm

(4.00 in.), all of the products exhibited an underestimate

bias ratio indicating deficiencies in all the QPEs to ac-

curately capture the heavy rain microphysical processes.

A regional analysis was performed using the three

radar-only products: Q3RAD, Dual Pol, and PPS.

Scatterplot analysis and stratification of errors for

R/G pairs below, within, and generally above the

melting layer indicated Q3RAD performed better

than single-radar QPEs over the southern plains,

Southeast/mid-Atlantic, and Northeast. In general,

FIG. 11. (a) Q3RAD calculated using the previous version of amax and (b)Q3RAD calculated using the new amax as

compared to 24-h gauge totals.

FIG. 10. (a) The value of the tropical rain-rate enhancing factor

(i.e., amax) as a function of calendar date and (b) the gridded values

of the factor f used to reduce the portion of amax . 1.0.
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Dual Pol exhibited better performance than PPS.

Overall, the larger Q3RAD improvements were ob-

served within and above the melting layer.

Over the northern/central plains and the Great

Lakes/Midwest, both Dual Pol and PPS showed better

performance than Q3RAD below the melting layer.

Q3RAD had a large overestimate bias ratio due to

Q3RAD often classifying radar echoes within MCSs as

tropical and an enhanced empirical rain-rate relation-

ship was applied. An adjustment was made to the

rainfall enhancing factor and resulted in ;22% re-

duction in MAE and a ;15.5% reduction in the bias

ratio. Work continues on refining MRMS precipitation

classification to minimize the incorrect tropical rain

identification in the aforementioned regions.

Within and above the melting layer, Q3RAD had

fewer errors than Dual Pol and PPS despite the pre-

cipitation type classification issue. Dual Pol, on the

other hand, showed relatively large overestimate biases

within and above the melting layer due to a simplistic

brightband-correction scheme that could not account

for variations of the brightband intensity. Much of the

overestimate bias observed for Dual Pol was located

within and above the melting layer. Calibration errors

were another factor that impacted the three radar

QPEs. All three products were likely impacted by

gauge undercatch due to strong winds and hail con-

tamination given the sizable number of severe storm

events evaluated in the northern/central plains and

Great Lakes/Midwest. Overall, Q3RADs better per-

formance within and above the melting layer can be

attributed to the use of a reflectivity mosaic with a

vertical profile reflectivity correction for brightband

contamination.

Future work for the Dual Pol QPE includes im-

proving the melting layer detection and HHC algo-

rithms, as well as developing QPE that is not as

dependent upon Z or ZDR calibration. For MRMS, a

dual-polarization radar synthetic QPE using R(A),

R(KDP), and R(Z) is under development which aims at

making estimates using a combination of R(A) in

widespread rain, R(KDP) in areas of hail and Q3RAD

R(Z) elsewhere. Initial results will be reported in an

upcoming paper.
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Doviak, R. J., and D. S. Zrnić, 2006: Doppler Radar and Weather

Observations. 2nd ed. Dover Publications, 592 pp.

Droegemeier, K. K., and Coauthors, 2000: Hydrological aspects of

weather prediction and flood warnings. Report on the 9th

prospectus development team of the U.S. Weather Research

Program. Bull. Amer. Meteor. Soc., 81, 2665–2680, doi:10.1175/

1520-0477(2000)081,2665:HAOWPA.2.3.CO;2.

Duchon, C. E., and G. R. Essenberg, 2001: Comparative rainfall

observations from pit and aboveground rain gauges with and

without wind shields. Water Resour. Res., 37, 3253–3263,

doi:10.1029/2001WR000541.

Elmore, K. L., Z. L. Flamig, V. Lakshmanan, B. T. Kaney, V. Farmer,

H. D. Reeves, and L. P. Rothfusz, 2014: MPING: Crowd-

sourcing weather reports for research. Bull. Amer. Meteor. Soc.,

95, 1335–1342, doi:10.1175/BAMS-D-13-00014.1.

Fiebrich, C. A., C. R. Morgan, A. G. McCombs, P. K. Hall, and

R. A. McPherson, 2010: Quality assurance procedures for

mesoscale meteorological data. J. Atmos. Oceanic Technol.,

27, 1565–1582, doi:10.1175/2010JTECHA1433.1.

Fulton, R., J. Breidenbach, D. Seo, D. Miller, and T. O’Bannon,

1998: The WSR-88D rainfall algorithm. Wea. Forecast-

ing, 13, 377–395, doi:10.1175/1520-0434(1998)013,0377:

TWRA.2.0.CO;2.

Giangrande, S., andA. Ryzhkov, 2008: Estimation of rainfall based

on the results of polarimetric echo classification. J. Appl.

Meteor., 47, 2445–2462, doi:10.1175/2008JAMC1753.1.

Grams, H., J. Zhang, and K. Elmore, 2014: Automated identifica-

tion of enhanced rainfall rates using the near-storm environ-

ment for radar precipitation estimates. J. Hydrometeor., 15,

1238–1254, doi:10.1175/JHM-D-13-042.1.

Groisman, P. Ya., and D. R. Legates, 1994: The accuracy of United

States precipitation data.Bull. Amer. Meteor. Soc., 75, 215–227,

doi:10.1175/1520-0477(1994)075,0215:TAOUSP.2.0.CO;2.

Kim, D., B. Nelson, and D. J. Seo, 2009: Characteristics of re-

processed Hydrometeorological Automated Data System

(HADS) hourly precipitation data. Wea. Forecasting, 24,

1287–1296, doi:10.1175/2009WAF2222227.1.

Krajewski,W. F., G. Villarini, and J. A. Smith, 2010: Radar–rainfall

uncertainties: Where are we after thirty years of effort? Bull.

Amer. Meteor. Soc., 91, 87–94, doi:10.1175/2009BAMS2747.1.

Kumjian, M. R., 2013: Principles and applications of dual-

polarization weather radar. Part II: Warm- and cold-season

applications. J. Oper. Meteor., 1, 243–264, doi:10.15191/

nwajom.2013.0120.

774 JOURNAL OF HYDROMETEOROLOGY VOLUME 18

Unauthenticated | Downloaded 10/11/22 06:20 AM UTC

https://ams.confex.com/ams/93Annual/webprogram/Paper221525.html
https://ams.confex.com/ams/93Annual/webprogram/Paper221525.html
http://dx.doi.org/10.1175/JHM-D-15-0095.1
http://dx.doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2
http://dx.doi.org/10.1002/joc.1688
http://dx.doi.org/10.1175/1520-0477(2000)081<2665:HAOWPA>2.3.CO;2
http://dx.doi.org/10.1175/1520-0477(2000)081<2665:HAOWPA>2.3.CO;2
http://dx.doi.org/10.1029/2001WR000541
http://dx.doi.org/10.1175/BAMS-D-13-00014.1
http://dx.doi.org/10.1175/2010JTECHA1433.1
http://dx.doi.org/10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2
http://dx.doi.org/10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2
http://dx.doi.org/10.1175/2008JAMC1753.1
http://dx.doi.org/10.1175/JHM-D-13-042.1
http://dx.doi.org/10.1175/1520-0477(1994)075<0215:TAOUSP>2.0.CO;2
http://dx.doi.org/10.1175/2009WAF2222227.1
http://dx.doi.org/10.1175/2009BAMS2747.1
http://dx.doi.org/10.15191/nwajom.2013.0120
http://dx.doi.org/10.15191/nwajom.2013.0120


Martinaitis, S. M., 2008: Effects of multi-sensor radar and rain

gauge data on hydrologic modeling in relatively flat terrain.

M. S. thesis, Dept. of Meteorology, Florida State University, 99

pp. [Available online at http://diginole.lib.fsu.edu/islandora/

object/fsu%3A180955 .]

Marzen, J., and H. E. Fuelberg, 2005: Developing a high resolution

precipitation dataset for Florida hydrologic studies. 19th Conf.

on Hydrology, New Orleans, LA, Amer. Meteor. Soc., J9.2.

[Available online at https://ams.confex.com/ams/Annual2005/

techprogram/paper_83718.htm.]

Neff, E. L., 1977: Howmuch rain does a rain gage gage? J. Hydrol.,

35, 213–220, doi:10.1016/0022-1694(77)90001-4.
Nelson, B., O. Prat, D. Seo, and E. Habib, 2016: Assessment and

implications of NCEP stage IV quantitative precipitation es-

timates for product comparisons. Wea. Forecasting, 31, 371–
394, doi:10.1175/WAF-D-14-00112.1.

Rinehart, R. E., 2010: Radar for Meteorologists. 5th ed. De-

partment of Atmospheric Sciences, University of North

Dakota, 150–158.

Ryzhkov, A. V., M. Diederich, P. Zhang, and C. Simmer, 2014:

Potential utilization of specific attenuation for rainfall esti-

mation, mitigation of partial beam blockage, and radar net-

working. J. Atmos. Oceanic Technol., 31, 599–619, doi:10.1175/
JTECH-D-13-00038.1.

Sieck, L. C., S. J. Burges, and M. Steiner, 2007: Challenges in ob-

taining reliable measurements of point rainfall.Water Resour.

Res., 43, W01420, doi:10.1029/2005WR004519.

Smith, J. A., D. J. Seo, M. L. Baeck, and M. D. Hudlow, 1996: An

intercomparison study of NEXRAD precipitation estimates.

Water Resour. Res., 32, 2035–2046, doi:10.1029/96WR00270.

Steiner, M., J. A. Smith, S. J. Burges, C. V. Alonso, and R. W.

Darden, 1999: Effect of bias adjustment and rain gauge data

quality control on radar rainfall estimation. Water Resour.

Res., 35, 2487–2503, doi:10.1029/1999WR900142.

Wang, Y., P. Zhang, A. Ryzhkov, J. Zhang, and P. Chang, 2014:

Utilization of specific attenuation for tropical rainfall estima-

tion in complex terrain. J. Hydrometeor., 15, 2250–2266,

doi:10.1175/JHM-D-14-0003.1.

Wardlow, B. D., M. C. Anderson, and J. P. Verdin, Eds., 2012:

Remote Sensing of Drought: Innovative Monitoring Ap-

proaches. CRC Press, 484 pp.

Warning Decision Training Branch, 2014: RDA/RPG build 15.0

training. Tech. Doc., version 1411, 12 pp. [Available online at

http://www.wdtb.noaa.gov/buildTraining/Build15/documents/

Build15-Deploy.pdf.]

Wilson, J.W., andE.A.Brandes, 1979:Radarmeasurement of rainfall:

A summary.Bull. Amer.Meteor. Soc., 60, 1048–1058, doi:10.1175/

1520-0477(1979)060,1048:RMORS.2.0.CO;2.

Xu, X., K. Howard, and J. Zhang, 2008: An automated radar

technique for the identification of tropical precipitation.

J. Hydrometeor., 9, 885–902, doi:10.1175/2007JHM954.1.

Zhang, J., and Y. Qi, 2010: A real-time algorithm for the correction

of bright band effects in radar-derived QPE. J. Hydrometeor.,

11, 1157–1171, doi:10.1175/2010JHM1201.1.

——, and Coauthors, 2011: National Mosaic and Multi-Sensor

QPE (NMQ) system: Description, results, and future plans.

Bull. Amer. Meteor. Soc., 92, 1321–1338, doi:10.1175/

2011BAMS-D-11-00047.1.

——, Y. Qi, K. Howard, C. Langston, and B. Kaney, 2012: Radar

Quality Index (RQI)—A combined measure for beam blockage

andVPReffects in a national network. IAHSPubl., 351, 388–393.
——, and Coauthors, 2014: Initial operating capabilities of quan-

titative precipitation estimation in the Multi-Radar Multi-

Sensory system. 28th Conf. of Hydrology, Atlanta, GA,Amer.

Meteor. Society, 5.3. [Available online at https://ams.confex.

com/ams/94Annual/webprogram/Paper240487.html.]

——, and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) quan-

titative precipitation estimation: Initial operating capabilities.Bull.

Amer.Meteor. Soc.,97, 621–638, doi:10.1175/BAMS-D-14-00174.1.

Zittel,W. D., R. R. Lee, L.M. Richardson, J. G. Cunningham, J. A.

Schultz, and R. L. Ice, 2015: Geographical and seasonal

availability of light rain, dry snow and Bragg scatter to esti-

mateWSR-88DZDR system bias. 31st Conf. on Environmental

Information Processing Technologies, Phoenix, AZ, Amer.

Meteor. Soc., 11.2. [Available online at https://ams.confex.

com/ams/95Annual/webprogram/Paper265374.html.]

MARCH 2017 COCKS ET AL . 775

Unauthenticated | Downloaded 10/11/22 06:20 AM UTC

http://diginole.lib.fsu.edu/islandora/object/fsu%3A180955
http://diginole.lib.fsu.edu/islandora/object/fsu%3A180955
https://ams.confex.com/ams/Annual2005/techprogram/paper_83718.htm
https://ams.confex.com/ams/Annual2005/techprogram/paper_83718.htm
http://dx.doi.org/10.1016/0022-1694(77)90001-4
http://dx.doi.org/10.1175/WAF-D-14-00112.1
http://dx.doi.org/10.1175/JTECH-D-13-00038.1
http://dx.doi.org/10.1175/JTECH-D-13-00038.1
http://dx.doi.org/10.1029/2005WR004519
http://dx.doi.org/10.1029/96WR00270
http://dx.doi.org/10.1029/1999WR900142
http://dx.doi.org/10.1175/JHM-D-14-0003.1
http://www.wdtb.noaa.gov/buildTraining/Build15/documents/Build15-Deploy.pdf
http://www.wdtb.noaa.gov/buildTraining/Build15/documents/Build15-Deploy.pdf
http://dx.doi.org/10.1175/1520-0477(1979)060<1048:RMORS>2.0.CO;2
http://dx.doi.org/10.1175/1520-0477(1979)060<1048:RMORS>2.0.CO;2
http://dx.doi.org/10.1175/2007JHM954.1
http://dx.doi.org/10.1175/2010JHM1201.1
http://dx.doi.org/10.1175/2011BAMS-D-11-00047.1
http://dx.doi.org/10.1175/2011BAMS-D-11-00047.1
https://ams.confex.com/ams/94Annual/webprogram/Paper240487.html
https://ams.confex.com/ams/94Annual/webprogram/Paper240487.html
http://dx.doi.org/10.1175/BAMS-D-14-00174.1
https://ams.confex.com/ams/95Annual/webprogram/Paper265374.html
https://ams.confex.com/ams/95Annual/webprogram/Paper265374.html

