Warning Methodology Screen, Rank, Analyze, Decide (SRAD)

1. Screen the storms that threaten life and property over your CWA.

- <u>Severe Hazards (tornado/wind/hail)</u>: Load a 4-panel display showing a 60-minute loop of MRMS': Reflectivity at Lowest Altitude, Maximum Estimated Size of Hail (MESH) and 60-min MESH Tracks, 60-min 0-2 km Rotation Tracks, and Vertically Integrated Ice (Note: An alternative could be a single-site lowest-tilt, Base Reflectivity, 60 minute time lapse loop with algorithm overlays. Use this alternative display if the MRMS products are experiencing latency.)
- 2. Identify the highest **Rank**ed storm. Factors to consider include:
 - Near-storm environment
 - Storm reports
 - Rapidly-intensifying storms
 - Deviant motion (i.e., right-mover, left-mover)
 - Convective mode (ordinary cell, multicell, supercell, derecho, etc.)
 - Maximum Expected Size of Hail (MESH) value
 - Azimuthal shear / Rotation Tracks values
 - Signatures: Inflow notch, three-body scatter spike (TBSS), hook echo, Tornado Debris Signature (TDS), rear inflow jet (RIJ) etc.
 - Societal / population considerations
 - Storms which are under-warned or have a warning that's due to expire soon (<10 min)

Go to Step 4 to immediately issue a warning for your highest ranked storm if:

- It exhibits a high confidence severe signature (e.g., TDS) and/or it has a high confidence report, and
- It's unwarned, under warned, or has a warning set to expire in less than 5 minutes.

Otherwise, go to step 3.

- 3. Analyze the highest ranked storm's structure and hazards.
 - Use the "All Hazards Decision Chart" as a quick reference.
 - Use the Warning Decision Cycle checklists as detailed reference.
 - Updraft Strength
 - \circ Tornado
 - Severe Hail
 - $_{\circ}$ Severe Wind
- 4. Make your **Decision**. Consider the following factors when determining motion, duration, polygon orientation, and wording:
 - Tornado
 - Choose WarnGen Track type: "One Storm" and track the low-level vortex, but regard the parent storm's motion.
 - Be sure to account for possible mesocyclone occlusion(s) and motion uncertainty in your polygon (don't try to be too precise).

- Capture multiple threats in close proximity with a single polygon when necessary.
- Avoid:
 - "Tornado Emergency" wording unless there is very high confidence of a significant (EF2+) tornado moving into an urban area.
- Non-mesocyclonic: Track the updraft interaction with the low-level boundary(ies).
- Severe Hail/Wind
 - Individual cell: Choose WarnGen Track type: "One Storm" and track the updraft/downdraft interface region; be sure to include both the updraft and downdraft regions in your polygon.
 - Supercell: Anticipate deviant motion; include the Rear Flank Downdraft (RFD) in your polygon.
 - <u>Multicell</u>: Choose WarnGen Track type: "One Storm" and track the area where cells mature; ensure polygon includes existing severe threat as well as anticipates new cell development.
 - Bow Echo/QLCS: Choose WarnGen Track type: "Line of Storms" and track the gust front; include trailing severe winds and hail in your polygon.

NOTE: One SRAD cycle (steps 1-4) should take about 5 minutes (with experience).

5. Repeat the SRAD process until no new warnings are required.

WDTD Suggested Warning Methodology: Screen, Rank, Analyze, Decision (SRAD)

Acceleration and convergence into a strong, low- Formation of precipitation core (cold pool) at the Tornado Vortex Signature (TVS) / Tornado Signature (TS) Tornado Vortex Signature (TVS) / Tornado Signature (TS) Reflectivity (Z) core aloft (≈ 0°C) co-located with Paired front/real inflow notch _ Boundary ingestions Updraft deep cnvg zone (UDCZ) entry/inflection point surface typically signals tornado dissipation Storm Characteristics Discrete, surface-based, classic supercell level mesocylone (during pre-tornadic stage) Descendingrear inflow jet (RU)/reflectivity drop Confidence Builders (3 Ingredients Method): misoscale vortexalong the boundary Contracting bookend vortex with V_r > 25 kt Tornado Debris Signature (TDS) Tornado Debris Signature (TDS) Balanced or slightly shear dominant Enhanced surge Line break Front reflectivity nub Non-Mesocyclonic (Landspout/Waterspout) <u>Quasi-Linear Convective System (QLCS)</u> ornado Mesocyclonic Rear Inflow Jet (RIJ) or enhanced outflow causing surge Significant Tornado Parameter (effective layer) (STP_{eff}) >1 boundary possessing strong horizontal shears w/misoscale vorticies Given an updraft forming along a slow moving or stationary surface Vote: STP_{sw} improves skill by replacing ESRH with 0–500 m AGL SRH <u>Near Storm Environment</u> Effective storm-relative helicity (ESRH) >150 m²s² 100-mb mean parcel CAPE (MLCAPE) > 1500 J/kg Non-supercell tornado parameter (NST) > 1 Effective bulk wind difference (EBWD) > 39 kt 100-mb mean parcel LCL (MLLCL) < 1000 m</p> 100-mb mean parcel CIN (MLCIN) < 50 J/kg</p> 100-mb mean parcel CIN (MLCIN) < 25 J/kg</p> 0-3 km line normal bulk shear > 30 kt 0-3 km MLCAPE (MLCAPE₃) > 40 J/kg Surface relative vorticity (ζ,) > 8 x 10⁻⁵ s⁻¹ 0-3 km MLCAPE (MLCAPE₃) > 100 J/kg 0-1 km lapse rate (LR₀₁) > 9°C/km Given a discrete supercell: 0-6 km bulk shear < 26 kt</p> or bow in line Given a QLCS:

Cell merger/reflectivity spike near surge. History of tornado

Reflectivity tag intersecting a surge

Nudgers:

Confirmed tornado/Tornado Debris Signature (TDS)

Tight/strong mesovortex with V_i > 25 kt

Rev. February 2022

Radar Estimated Hail Size and Type

	Storm-Top Divergence	14,500+ ft Freezing Level	Hail Size (in.)	1.00" -1.75"	1.75" - 2.00"	2,00" - 2.50"	2.50" - 3.00"	> 3.00″	
			∆V (kts)	135-178	178-188	188-209	209-230	231	ľ
	Storm-Top Divergence	13,500-14,500 ft Freezing Level	Hail Size (in.)	1.00" - 1.75"	1.75" - 2.00"	2.00" -2.50"	2.50" - 3.00"	> 3.00″	
			∆V (kts)	115-147	147-160	160-180	180-208	215	
	Storm-Top Divergence	12,500-13,500 ft Freezing Level	Hail Size (in.)	1.00" - 1.75"	1.75" - 2.00"	2.00" - 2.50"	2.50" - 3.00"	> 3.00"	
			∆V (kts)	110-143	143-152	152-170	170-188	195	
	Storm-Top Divergence	11,500-12,500 ft Freezing Level	Hail Size (in.)	1.00" - 1.75"	1.75" - 2.00"	2.00" - 2.50"	2.50" - 3.00"	> 3.00″	
			∆V (kts)	80-120	120-135	135-155	155-184	185	
	Storm-Top Divergence	10,500-11,500 ft Freezing Level	Hail Size (in.)	1.00" -1.75"	1.75" - 2.00"	2.00" - 2.50"	2.50" - 3.00"	> 3.00″	
			∆V (kts)	74-115	115-126	126-148	148-172	175	

Boustead, J. M., 2008

"Valid for S-bandradar only, Source: Kumjian et al., 2010

- 0-6 km mean wind > 16 kt A
- Most unstable CAPE (MUCAPE) > 2000 J/kg
 - Effective bulk wind difference (EBWD) > 20 kt A

Gust front hugs close to reflectivity (Z) gradient Linear weak echo region (WER) along leading

> 15-20 kft is optimal

Note: A mesovortex w/RIJ produces strongest wind

Fast storm motion

edge

Motion Storm

Edge