Warning Methodology

Screen, Rank, Analyze, Decide (SRAD)

- 1. **Screen** the storms that threaten life and property over your CWA.
 - Severe Hazards (tornado/wind/hail): Load a 4-panel display showing a 60-minute loop of MRMS': Reflectivity at Lowest Altitude, Maximum Estimated Size of Hail (MESH) and 60-min MESH Tracks, 60-min 0-2 km Rotation Tracks, and Vertically Integrated Ice (Note: An alternative could be a single-site lowest-tilt, Base Reflectivity, 60 minute time lapse loop with algorithm overlays. Use this alternative display if the MRMS products are experiencing latency.)
- 2. Identify the highest Ranked storm. Factors to consider include:
 - Near-storm environment
 - Storm reports
 - Rapidly-intensifying storms
 - Deviant motion (i.e., right-mover, left-mover)
 - Convective mode (ordinary cell, multicell, supercell, derecho, etc.)
 - Maximum Expected Size of Hail (MESH) value
 - Azimuthal shear / Rotation Tracks values
 - Signatures: Inflow notch, three-body scatter spike (TBSS), hook echo, Tornado Debris Signature (TDS), rear inflow jet (RIJ) etc.
 - Societal / population considerations
 - Storms which are under-warned or have a warning that's due to expire soon (<10 min)

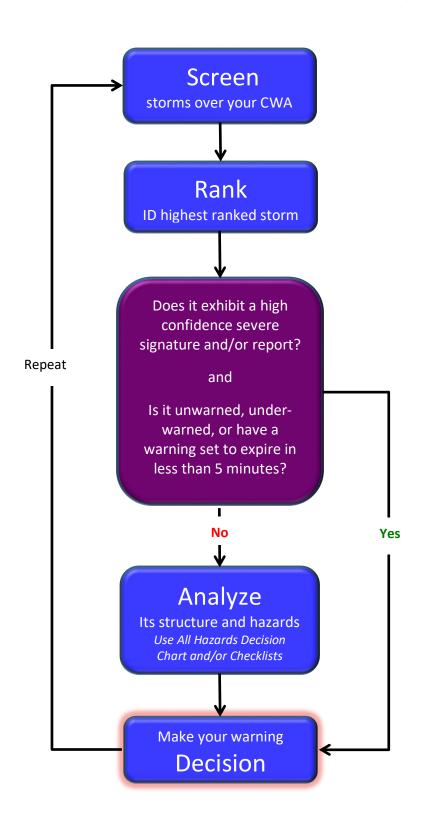
Go to Step 4 to immediately issue a warning for your highest ranked storm if:

- It exhibits a high confidence severe signature (e.g., TDS) and/or it has a high confidence report, and
- It's unwarned, under warned, or has a warning set to expire in less than 5 minutes.

Otherwise, go to step 3.

- 3. **Analyze** the highest ranked storm's structure and hazards.
 - Use the "All Hazards Decision Chart" as a quick reference.
 - Use the Warning Decision Cycle checklists as detailed reference.
 - Updraft Strength
 - Tornado
 - Severe Hail
 - Severe Wind
- 4. Make your **<u>Decision</u>**. Consider the following factors when determining motion, duration, polygon orientation, and wording:
 - Tornado
 - Choose WarnGen Track type: "One Storm" and track the low-level vortex, but regard the parent storm's motion.
 - Be sure to account for possible mesocyclone occlusion(s) and motion uncertainty in your polygon (don't try to be too precise).

- o Capture multiple threats in close proximity with a single polygon when necessary.
- o Avoid:
 - "Tornado Emergency" wording unless there is very high confidence of a significant (EF2+) tornado moving into an urban area.
- Non-mesocyclonic: Track the updraft interaction with the low-level boundary(ies).


Severe Hail/Wind

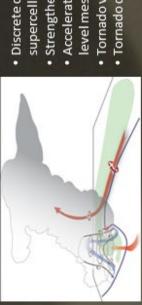
- Individual cell: Choose WarnGen Track type: "One Storm" and track the updraft/downdraft interface region; be sure to include both the updraft and downdraft regions in your polygon.
 - Supercell: Anticipate deviant motion; include the Rear Flank Downdraft (RFD) in your polygon.
- <u>Multicell</u>: Choose WarnGen Track type: "One Storm" and track the area where cells mature; ensure polygon includes existing severe threat as well as anticipates new cell development.
 - ➤ <u>Bow Echo/QLCS</u>: Choose WarnGen Track type: "Line of Storms" and track the gust front; include trailing severe winds and hail in your polygon.

NOTE: One SRAD cycle (steps 1-4) should take about 5 minutes (with experience).

5. Repeat the SRAD process until no new warnings are required.

WDTD Suggested Warning Methodology: Screen, Rank, Analyze, Decision (SRAD)

ornado


Near Storm Environment

Storm Characteristics

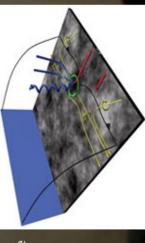
Significant tornado parameter (Effective Layer) (STP_{eff}) > 1

- Effective bulk wind difference (EBWD) > 39 kt
- Effective storm-relative helicity (ESRH) >150 m²s⁻²
 - 100-mb mean parcel CAPE (MLCAPE) > 1500 J/kg 100-mb mean parcel LCL (MLLCL) < 1000 m
- 100-mb mean parcel CIN (MLCIN) < 50 J/kg within last hour

Mesocyclonic

- Discrete classic or High Precipitation (HP)
- Strengthening updraft
- Acceleration & convergence into a strong lowlevel mesocylone
- Tornado vortex signature (TVS)
 - Tornado debris signature (TDS)

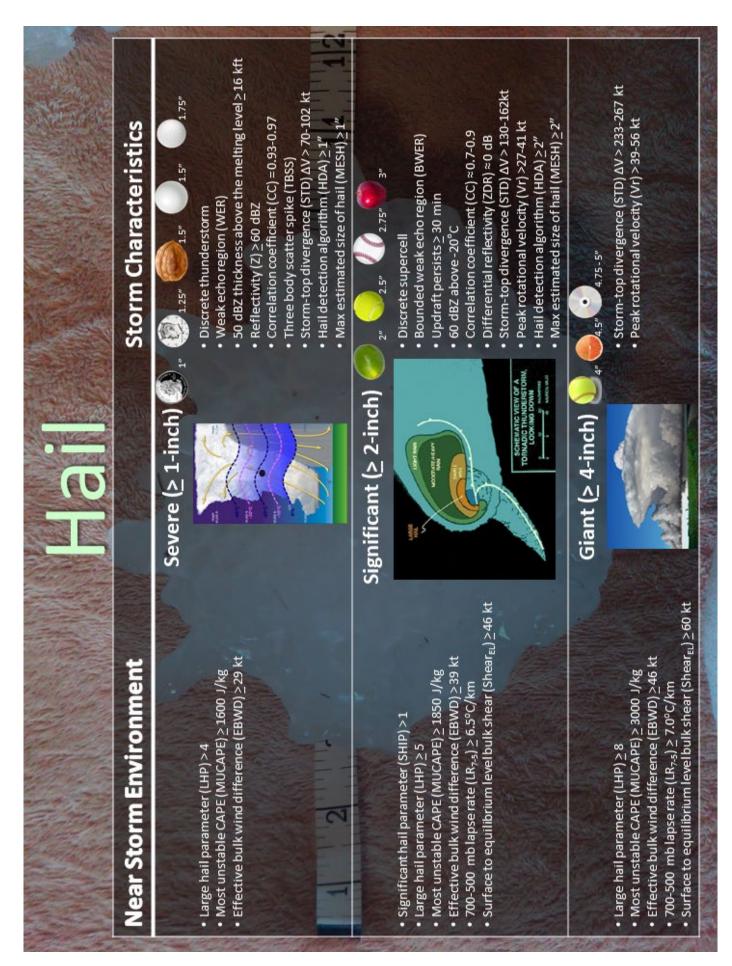
Non-Mesocyclonic (Landspout/Waterspout)


- Non-supercell tornado parameter (NST) > 1
 - 0-1 km lapse rate (LR₀₋₁) > 9°C/km
- 0-3 km MLCAPE (MLCAPE₃) > 100 J/kg
- 100-mb mean parcel CIN (MLCIN) < 25 J/kg
- Stationary boundary with sfc relative vorticity (7,) > 8 x 10⁻⁵s⁻¹

- Strong, rapidly growing updraft (best seen via Z at
 - Tornado vortex signature (TVS)
- Tornado debris signature (TDS)

Quasi-Linear Convective System (QLCS)

- 0-3 km line normal bulk shear > 30 kt
- Rear Inflow Jet (RIJ) or enhanced outflow causing surge or bow in line
- 0-3 km MLCAPE (MLCAPE₃) > 40 J/kg


- Confidence Builders (3 Ingredients Method): Balanced or slightly shear dominant
- Descending rear inflow jet (RIJ)/reflectivity drop Enhanced surge
 Line break

Updraft deep cnvg zone (UDCZ) entry/inflection point

- Paired front/real inflow notch
 Boundary ingestions Front reflectivity nub
 - Contracting bookend vortex with V_r ≥ 25 kt
- Confirmed tornado/Tornado Debris Signature (TDS) Tight/strong mesovortex with V_r ≥ 25 kt
- Reflectivity tag intersecting a surge

Nudgers:

- Cell merger/reflectivity spike near surge
 - History of tornadoes

Wind

Near Storm Environment

Storm Characteristics

Mid-altitude radial convergence (MARC) (0°C to

Rapid formation of strong core aloft

Descending core bottom

Wet hail signature (Three-Body Scatter Spike

lifted condensation level (LCL)) $\Delta V > 15 \text{ kt}$

Note: Beware of low reflectivity (Z) cells w/high

lifted condensation levels (LCLs) at 0°C and/or

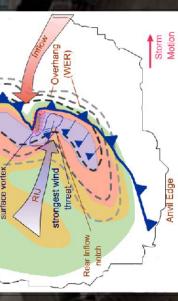
strong wind in mixing layer

Low-level (< 1500 ft AGL) velocity (V) > 30 kt

(TBSS), CC ~ 0.93-0.96, KDP > 3°C/km)

Individual Cell Downburst/Microburst

Wet Microburst:


- Wet microburst severity index (WMSI) > 80
- Microburst composite (MBCP) > 5-8
- 0-3 km max theta-e difference $(\Delta\theta_{\mu}) > 25^{\circ}C$ Surface-based CAPE (SBCAPE) ≥ 3100 J/kg
 - Downdraft CAPE (DCAPE) ≥ 900 J/kg
 - Precipitable water (PW) ≥ 1.5 "

Dry Microburst:

- Inverted-V sounding (apex based in mid-levels)
 - Most unstable CAPE (MUCAPE) > 0 J/kg |
- 100-mb mean parcel LCL height > melting level Weak effective bulk wind difference (EBWD)
- Weak boundary layer winds
- 0-3 km lapse rate (LR₀₋₃) \geq dry adiabatic

Quasi-Linear Convective System (QLCS)/Derecho/Cold-Pool Driven

- Derecho composite parameter (DCP) > 2
 - Downdraft CAPE (DCAPE) > 980 J/kg
 - · 0-6 km mean wind > 16 kt
- Most unstable CAPE (MUCAPE) > 2000 J/kg
- Effective bulk wind difference (EBWD) > 20 kt

- Strong leading reflectivity (Z) gradient
- Bow echo
- Rear inflow jet (RIJ)
- Mid-altitude radial convergence (MARC) AV > 50 kts at 3-5 km AGL
 - Deep convergence zone (DCZ) > 10 kft
- Gust front hugs close to reflectivity (Z) gradient > 15-20 kft is optimal
 - Linear weak echo region (WER) along leading
- Fast storm motion

Note: A mesovortex w/RIJ produces strongest wind

Impact-Based Warnings Guidance*

Initial Supercell Tornado Warning Threshold

Considerable Tag Threshold With TDS

Considerable Tag Threshold Without TDS

Potential Pitfalls

rironment Lowestslice below 10kft. Original resources available at: http://training.weather.gov/wdtd/courses/ibw/references.php These are guideline thresholds. Knowy

Nowcasting Significant Tornadoes

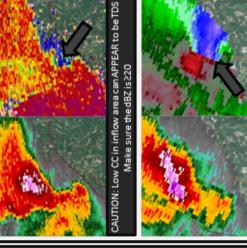
TDS Height Threshold

EF2+: 8,000-10,000ft.

Measuring V_{rot}

 $V_{r[max]} - V_{r[min]}$ 96out Ш V_{rot}

/rot =73


- Also consider...
- V_{rot} relationships weaken at ranges > 70 nmi Is the velocity in area of > 20 dBZ?

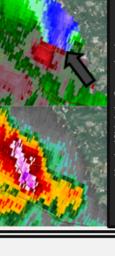
Tornado Debris Signature (TDS) Identification

2

Upgrade to Catastrophic Tag Tornado confirmed (TDS or credible source) "Tornado Emergency" if: Believed to be strong/violent (EF2+) Expected to impact populated area (Must meet ALL)

If 0.5° V corrupted, pick higher beam < 2 km AGL

TVS/TS: 0.5° V_{rot} ≥ 70 kt. on any of the last 3 scans


Other EF-2+ Indicators:

Supercell meso: ≥ 8,000 ft. deep with avg. Vrot ≥ 30 kt,

Near storm environment (NSE) supportive

Parent storm history

persisting for at least 2 volume scans

Strong velocity in weak Z below strong

First, identify a valid velocity circulation at the lowest elevation tilt

Is the CC below 0.90?

Collocated with 2 above 30 dBZ?

ZDR near zero? – Not necessary, but adds confidence

continuity

ADDS

CONFIDENCE!!

Tornado Warning Points of Emphasis*

convergencezone(UDCZ) Paired front/rear inflow Remember: Rotational velocity will assess CURRENT intensity, but likely not provide much lead time fightening mesovortex Cell merger/boundary entry/inflection point Front reflectivity nub Contracting bookend dentification (see revers methods/pitfalls/TDS Collaborate on the CWA Updraft/downdraft Attempt to limit false Other features to vortex (Vr > 25 kts) borders as much as Descending RIJ or reflectivity drop on QLCS tornadoes. Stronger environments may require more proactive warnings. alarm area warnings in QLCS (Vr > 25 kts) possible when possible Avoid "blanket Line break watch for: ngestion QLCS Three-Ingredients Method Balanced or slightly shear-dominant portion Key features to look for when assessing 0-3-km line-normal bulk shear >30 kts RIJ or enhanced outflow causing Keep in Mind... Warn downstream with sufficient QLCS tornado potential: a hook indicates a supercell, not surges/bows in line Se velocity data – presence of Evaluate the storm/velocity NECESSARILY a tornado at all elevation angles! lead time of line 2 ë, Supercell Warning Confidence Thresholds also examine these ingredients individually during any severe Eff. Layer Significant Tornado Parameter (STP) (Smith et al. 2014) When using STP, be sure to EF-3 EF-0 EF-2 F-1 Above Warning Ī Threshold weather mesoanalysis! 3 RM+QLCS Tornadoes and NULLs (2014): 0-5900 ft ARL Is the Environment Favorable? STP (Effective Layer) Values Given a 30-kt V_{rot} Signature: $V_{rot}(kt)$ Best Practice Warning Threshold Includes these ingredients: MLCAPE [100 mb] MLCIN [100 mb] MLLCL [100 mb] Effective BWD Effective SRH 2 be unnecessary Warningmay 0 0.55 0.25 0.45 Probability of Tornado (%)

Radar Estimated Hail Type/Size	DUAL-POL RADAR HAIL SIGNATURES	$\frac{\text{ZDR}}{45-59 \text{ dBZ}}$ = Hail poss -0.3 to 1 dB ≈ Dry or large hail > 1 dB ≈ More liquid		KD	<u>KDP</u> : ≈ 1-2" hail <1°/km ≈ Mostly dry hail ≈ ≥2" hail >3°/km ≈ Rain/hail combo or melting hail		Signature	ZDR < 1 dB	0.97 KDP < 1°/km	ZDR ≈ 1-2 dB	.96 KDP > 0.5°/km	BZ ZDR ≈ 0 dB	KDP ≈ 0°/km	ZDR > 2 dB	0.96 KDP > 4-5°/km	(>45 dBZ) ZDR ≈ 0 dB or lower	CC < 0.9 (possibly 0.7) KDP not displayed
		:Zi	45-59 dBZ >60 dBZ	ı	$\frac{CC}{0.93 - 0.97} \approx 1-2$ " hail 0.70 - 0.90 ≈ ≥ 2 " hail			Z > 55 dBZ	CC ≈ 0.95-0.97	Z > 55 dBZ	CC ~0.93-0.96	il Z≈45-55 dBZ	CC > 0.98	Z > 55 dBZ	CC ≈ 0.92-0.96	iil Z > 55 dBZ (>45 dBZ)	CC < 0.9 (p
							Hail Event Type	Severe Hail	(with little rain)	Severe Hail Mixed			Sub-Severe Melting Hail		Significant (≥2″) Hail		
Radar Es	Storm-Top Divergence	Max Hail Size (in.)	Quarter $(1")$	Golf ball (1.75")	Baseball (2.75")	Softball (4")	Adapted from Wittand Nelson, 1991	Mesocyclone	Hail Size (in.) Peak Rotational Velocity (kt)	27-41	39-56 Source: Blairet al., 2011	Three Body Scatter Spike > 0.4 – 0.8 in.*	SW			KDP	
		Peak V (kts)	70-102	115-147	174-207	233-267		Me	Hail Size (in.)	1.75" to 2.00"	,¥.	Three Body Scat			2		