Table of Contents

Topic: Velocity Interpretation

Click to jump to lesson

<table>
<thead>
<tr>
<th>Lesson 1</th>
<th>Large-Scale Doppler Velocity Patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesson 2</td>
<td>Storm-Scale Doppler Velocity Patterns</td>
</tr>
</tbody>
</table>
Hi, my name is Jill Hardy and welcome to this Topic on Velocity Interpretation. This lesson will cover large-scale Doppler velocity patterns, while the next lesson will focus on storm-scale patterns.

We have a guest speaker for this lesson: Steve Martinaitis of OU CIMMS at NSSL. But if you have any questions regarding the material, please feel free to contact me, or the RAC team. Our contact information will be on the next slide.
When interpreting velocity data, the radial velocities are displayed, which are not the true velocities. Also, the RPG dealiases velocities while the RDA performs range folding. These tasks are effective most of the time, but failures do occur, which can inhibit your ability to interpret velocity products.
Learning Objectives

- Basic principles used to identify radial velocity signatures
- Relation of velocity displays to the vertical wind profile
- How to use velocity interpretation principles with WSR-88D velocity products

There are three learning objectives for this lesson. By the end of the lesson, you should be able to understand the basic principles used to identify radial velocity signatures, relate the velocity display to the vertical wind profile, and apply velocity interpretation principles to the WSR-88D velocity products.
There are also three performance objectives with this lesson. The first objective is to be able to interpret Doppler velocity patterns under uniform, non-uniform, ambiguous, and meteorologically complex conditions identifying:

- Inbound vs. Outbound Velocities
- Constant Wind Speed and Direction
- Wind Speed and Direction Changing with Height
- Velocity Maxima
- Confluence and Diffuence
- Vertical Discontinuities
- Boundaries

There are also three performance objectives with this lesson. The first objective is to be able to interpret Doppler velocity patterns under uniform, non-uniform, ambiguous, and meteorologically complex conditions. You will be identifying inbound vs. outbound velocities, constant wind speed and direction, wind speed and direction changing with height, velocity maxima, confluence and diffuence, vertical discontinuities, and boundaries.
The second performance objective is the ability to construct vertical wind profiles for uniform and non-uniform horizontal wind conditions. And the final performance objective is to assess the meteorological conditions associated with the identified velocity patterns.
In this lesson, we will be discussing large scale velocity patterns. The second lesson will then focus on storm-scale velocity signatures.
When you are looking at a velocity product, you are viewing the display from above looking into a cone. As you move farther away from the RDA, you are also increasing in height above the ground.
By using this concept, you can determine the wind flow at various levels and construct a three-dimensional wind profile of the atmosphere around the RDA. In this graphic here, you can see that with one elevation scan, the flow can be determined at different ranges, which are proportional to different heights. The flow at each range can then be assumed for a constant altitude.

At an AWIPS workstation, hold down the left mouse button at a selected cursor location. This will display the height in feet (AGL/MSL), azimuth, range (Statute Miles), and the radial velocity (knots).
Before we begin to look at conceptual models of velocity patterns, we need to discuss radial velocities. A radial velocity is defined as the component of target motion parallel to the radar radial, or azimuth. In this diagram, you can see the actual target motion (yellow arrow) and the radial velocity target motion (red arrow) along the radial (white arrow).
There are three basic principles with regards to radial velocities. The first principle is that radial velocities will always be less than or equal to actual target velocities. The second principle is that the radial velocity equals the actual velocity only where target motion is directly towards or away from the radar. The third principle is that a radial velocity of zero is measured where target motion is perpendicular to a radial or where the target is stationary.

You will see why in the following slides.
The relationship between a target’s actual velocity and the radial velocity depicted by the RDA can be described using the Radial Velocity Equation. Here, the absolute value of the radial velocity is equal to the actual velocity multiplied by the cosine of the angle β. The angle β represents the smaller angle between the actual velocity and the radar radial. When β equals 0°, then the radial velocity is equal to the actual velocity. When β is at 90°, then the radial velocity is zero.
The table here compares various angles of β and the percentage of the actual target motion measured at each radial. The greater the angle between the target’s velocity vector and the radar azimuth, the smaller the percentage of the target’s actual velocity that will be measured and depicted on the velocity products.

Note that at a 45° angle, the radar is measuring approximately 70% of the motion, not 50%. This is because of the cosine function within the equation, which creates a non-linear relationship.
This graphic depicts the radar’s ability to measure velocities and what the operator sees. When the wind is parallel to radial, the full component of the wind is measured. As the radial becomes more perpendicular to the actual wind, the radial component decreases. When the radial is perpendicular to the wind, the radar displays zero velocity. However, the actual velocity has not changed. This is the reason that the colors change or speed seems to decrease as you move away from the actual wind direction/speed.

Here, you can also see that inbound velocities (positive) are depicted by cool colors (green) and outbound velocities (negative) are depicted by warm colors (red). The reason for these colors is that the first Doppler radar pointed straight up, so downdrafts (negative vertical motion) pointed towards the radar.
Before we go on, it is important that we define a few terms here. Zero velocity is when the actual speed is zero or the direction is perpendicular to the radar beam (which can also be described as zero radial velocity). An isodop is a line of constant Doppler (radial) velocity. Finally, a zero isodop is a line of constant zero Doppler (radial) velocity.

Mean Radial Velocity Terms

- **Zero Velocity** – Actual speed is zero or the direction is perpendicular to the beam

- **Isodop** – Line of constant Doppler (radial) velocity

- **Zero Isodop** – Line of constant zero Doppler (radial) velocity
Here is an example of radial velocities on a Plan Position Indicator (PPI) scope. The inbound velocities are in green while the outbound velocities are in red. The zero isodop represents the line of constant zero radial velocity. A straight zero isodop, as seen here, represents a uniformly directional flow at all levels. The wind direction is simply perpendicular to the radar beam at the zero isodop and is from the inbound to the outbound side. In this example, a homogeneous westerly flow exists over this area.
There are two methods for determining wind direction. However, both of these methods carry with it the assumption that the flow over the entire area is homogeneous for each level.

The first method uses the zero isodop to determine wind direction. First draw a line along a radial from the RDA to some point along the zero isodop. Next, draw an arrow perpendicular to the line along the radial. The arrow should be pointing from inbound to outbound velocities. Assuming homogeneous flow, the arrow represents the wind direction at that range (height).

The second method uses the direction of the maximum inbound and outbound velocities from the radar. At a certain range, draw an arrow pointing from the location of the inbound maximum velocity towards the RDA. For both methods, note that the wind direction changes at each level, so you'll need to repeat for multiple levels.

You may need to use either method to estimate the wind direction. The flow may be horizontally homogeneous over just a part of the radar, so you may need to determine the wind direction for than one region on your PPI. Also, there will be many cases when one of these methods will not work. At times, you may have to use a combination of the two methods.
By using the methods described previously, we can determine the wind direction at any range (or height). It is important to draw the arrows perpendicular to the line from the RDA (radial), not the zero isodop itself.
Now that we have seen how wind direction is determined, it is time to look at wind speed. Staying with the homogenous westerly flow example, we can easily tell the maximum wind speed from the radar either looking into or directly away from the wind. This example shows a constant wind speed with height of 50-63 kts. Even though the radial velocity is zero at the zero isodop, the actual velocity is still 50-63 kts.
A wind speed maximum is identified by closed isodops surrounding a maximum velocity value. Here is a depiction of a low-level wind speed maximum, as if we had a low-level jet over weak surface flow and underneath a layer of near zero winds at the height that is represented by the farthest extent of the PPI. Starting near the RDA, you can see winds increase up to a closed area of 50-63 kts between the first and second range rings. From there, they decrease to near zero at the edge of the display.
Here is a velocity example that represent some of the concepts learned in the previous slides. First, you can see a fairly straight zero isodop extend from east to west across the display. With the inbound velocities north of the RDA, the general flow is from north to south. You can also see that the wind speed maximum is close to the radar. As you move farther away from the radar in the N-S direction, the maximum velocity values decrease, signifying a low-level wind maximum.
Now, we will begin looking at more complex velocity patterns.

Curvature of the zero isodop represents changing wind direction with height. In this case here, the zero isodop is shaped like the letter “S.” The wind direction near the RDA is from the south-southwest while the wind direction is from the west-southwest near the edge of the display. The associated vertical wind profile shown here indicates that the winds are turning clockwise with height. The meteorological term for this is veering. Veering generally indicates that warm air advection is occurring.
Here is a real-world example of veering winds with height. There is a “S” shape to the zero isodop, with winds from the north-northeast near the surface to winds from the south near the edge of the display. Thus, the winds are veering with height throughout the entire layer.
Some velocity patterns can exhibit a backward “S” shape pattern. In this case, the winds are turning counterclockwise with height, which is completely opposite of the standard “S” shape profile you saw earlier. In this graphic, the winds are from the north-northwest near the RDA and from the west-northwest near the edge of the display. When the vertical wind profile is turning counterclockwise with height, as seen here, it is referred to as backing. Backing winds are generally associated with cold air advection.
We will now diverge away from pure homogeneous wind fields and talk about diffluent and convergent wind fields. The best way to examine these kinds of wind fields is to split the display into two parts. Starting with the top half, the wind direction changes from the west near the surface to west-southwest at the edge of the display. Looking at the bottom half of the display, the wind direction is westerly near the RDA but changes to west-northwest at the southern edge of the display. This associated pattern shows the air spreading out as it passes over the RDA.

Note that the zero isodop has a bowing shape to it and that the inbound velocities are within the bow. Now, at any one point, the vertical wind profile is still going to be unidirectional; however, we now add that complexity of the wind field changing over horizontal distances (not horizontally homogeneous).
Looking at a diagram at what a confluent wind flow would be, you can see that the outbound velocities are now on the inside of the bow-shaped zero isodop. Here, the winds are coming together over the RDA.
Here is a real-life example of a confluence zone as seen by the WSR-88D. A lake effect snow band is passing over this radar from southwest to northeast. You can see that the zero isodop bends in a way that the outbound velocities are on the inside of the bowing shape.
Sometimes, you might run into a situation where you have a sloping wind maximum, like a low-level jet moving over a warm front. In this graphic here, the general flow at all levels is from the southwest to the northeast. If you were to look at the location of the velocity maximum for the inbound winds, you can see it is just beyond the first range ring. Now looking at the velocity maximum on the outbound side, you can see it is over the second range ring. This indicates that the wind maximum is increasing with height as it moves across the display.
Now let's move on to an even more complicated wind pattern. The following examples will show a frontal boundary moving through the display area, and the expected wind patterns at various stages of the passage. First, we will start with the front approaching the RDA, in this case, from the northwest. Here, you can see that the southeastern 2/3 of the display has an “S” shaped pattern, with velocity maxima located to the northeast and southwest of the RDA. Behind the front, located here, you can see a secondary inbound wind maximum to the northwest, which is not "connected" with any of the other two maxima on this display.
This real world example also has a front approaching the RDA, this time from the north-northwest. In the real world, it is not always easy to see frontal boundaries, especially in just one volume scan. Using the static image here, you can see the where the front is located via the cutoff between the inbounds and outbounds to the north and the velocity minimum to the west. A backing wind pattern is seen south of the boundary. The two connected wind maxima are located to the west-southwest and east-northeast of the RDA, while the disconnected post-frontal velocity maximum is located to the north-northeast of the RDA. Note that this boundary is aloft in this display. That is, the radar beam is sampling the elevated portion of the boundary.
Moving forward in time, here is a graphical representation of a frontal boundary now located over the RDA. The boundary is still oriented from southwest to northeast, as seen by the zero isodop. The winds are from the northwest behind the boundary, while they are generally from the southwest in a veering pattern ahead of the front.
Now moving forward in time with the real-world example, the frontal boundary is now at the RDA. The inbound velocities are located to the south and west of the RDA ahead of the boundary and to the northwest of the RDA behind the boundary. A sharp change in speeds indicates the location of the boundary. Also note the backing wind profile ahead of the front.
The front has now passed over the RDA and is now located to its southeast. The winds ahead of the front (southeastern 1/3 of the display) are still from the southwest. The front is approximately located where the blue line is drawn. Behind the front, the winds are now backing with height.
Back to the real world example, the front is now located to the southeast of the RDA, which is denoted by the blue line here. Notice that this front is losing definition with time. Only to the southwest of the RDA is there a leading edge of inbound velocities. Otherwise, use the leading edge of the enhanced outbounds as the frontal interface.
Let's review what has been discussed in this lesson. First, when you are looking at a velocity display, you are looking into a cone with north at the top of the display. The full component of the wind will be measured only when it is parallel to the radial. When the wind is perpendicular to the radial, none of the wind is measured.

Summary

- When looking at a display, you are looking into a cone with north at the top of the display.

- The full component of the wind will be measured only when it is parallel to the radial. When the wind is perpendicular to the radial, none of the wind is measured.
Inbound velocities are negative and are assigned cool colors. Outbound velocities are positive and are assigned warm colors.

Wind speed at a particular range (height) is determined by the highest Doppler velocity at that range if in a homogeneous flow field.
Summary Continued

- A normal “S” shape zero isodop produces a clockwise turning vertical wind profile (veering).

- A backward “S” shape zero isodop produces a counterclockwise turning vertical wind profile (backing).

Continuing on with the summary, a normal “S” shape zero isodop produces a clockwise turning vertical wind profile (veering), while a backward “S” shape zero isodop produces a counterclockwise turning vertical wind profile (backing).
Summary Continued

• A bow-shaped zero isodop with inbound velocities inside the curve represents diffluence.

• A bow-shaped zero isodop with outbound velocities inside the curve represents confluence.

Finally, a “bowed” shape zero isodop with inbound velocities inside the curve represents diffluence, while a “bowed” shape zero isodop with outbound velocities inside the curve represents confluence.
Hi again! It’s Jill Hardy and welcome to this lesson on storm-scale Doppler velocity patterns.

Again, we have a guest speaker: Steve Martinaitis of OU CIMMS at NSSL. But if you have any questions regarding the material, please feel free to contact me, or the RAC team. Our contact information will be on the next slide.
Review from Previous Topic

- When interpreting velocities products, radial velocities are displayed, which are not the true velocities.
- Improperly dealiased velocities and range folding can inhibit velocity interpretation.

Just like Lesson 1, we will recall that when interpreting velocity data, the radial velocities are displayed, which are not the true velocities. Also, the RPG dealiases velocities while the RDA performs range folding. These tasks are effective most of the time, but failures do occur, which can inhibit your ability to interpret velocity products.
From Lesson 1, recall that when you are looking at a velocity display, you are actually looking into a cone where the farther from the RDA you get, the greater the height above the ground the data is being measured. The full component of the wind will be measured only when it is parallel to the radial. When the wind is perpendicular to the radial, none of the wind is measured.

Wind speed at a particular range (height) is determined by the highest Doppler velocity at that range if in a homogeneous flow field.

From Lesson 1, recall that when you are looking at a velocity display, you are actually looking into a cone where the farther from the RDA you get, the greater the height above the ground the data is being measured. The full component of the wind will be measured only when it is parallel to the radial. When the wind is perpendicular to the radial, none of the wind is measured. You saw this through the Radial Velocity Equation. Also, wind speed at a particular range (height) is determined by the highest Doppler velocity at that range if in a homogeneous flow field. Of course, you saw how complex this became when the wind field became horizontally non-homogeneous.
There are two learning objectives to this lesson. By the end of this presentation, you should be able to understand how to identify storm-scale convergence and divergence signatures, and understand how to identify cyclonic and anticyclonic storm-scale signatures.
There are also two performance objectives with this lesson. The first objective is to be able to interpret Doppler velocity patterns under uniform, non-uniform, ambiguous, and meteorologically complex conditions identifying:

- Convergence and Divergence
- Cyclonic and Anticyclonic Rotation
- Any Combination
Performance Objectives

2. Assess the mesoscale meteorological conditions and threats associated with the identified velocity patterns.

The second objective is to assess the mesoscale meteorological conditions and threats associated with the identified velocity patterns.
In the first lesson, you saw a variety of factors and examples that influence the large-scale velocity field and its display in the AWIPS environment. Now, we will go ahead and focus on the small-scale phenomena, which cover only a few range gates, and therefore, have a relatively small change in elevation.
When examining data on this scale, you will be using the Zoom feature in order to see small scale rotation and/or convergence and divergence. It is critical to know where the phenomena is in relation to the RDA. Here, you can no longer assume that the RDA is in the center of the display, or on the display at all. The following three actions, either used separately or in combination, will help in locating the RDA.

You can select the Azimuth and Range (or Az/Ran) Overlay from the Tools menu to help determine the location of the RDA by overlaying a polar grid centered on the RDA. Or you can place your cursor at the point of interest and hold down the left mouse button. The cursor readout will give the azimuth and range (in statute miles) from the RDA. Make sure that the Home Location tool is not turned on. Or you can visually analyze the range gates in your velocity display. Range gates increase in width along each radial as they increase in distance from the RDA. This is one advantage to an unsmoothed radar display.
When interpreting pure divergence or convergence patterns, the velocity maxima lie along the same radial. Whether the pattern is divergent or convergent is dependent upon which maximum is closest to the RDA. With a convergent signature, the outbound maxima is closest to the RDA. With a divergent signature, the inbound maxima is closest to the RDA.

Note that in the following examples, the RDA is located to the south of the velocity signature.
Here is a basic diagram of a convergent velocity signature. As you can see here, both the maxima lie along the same radial with the outbound velocity maximum closest to the RDA.
Same thing here for the divergent velocity signature, except that the inbound velocity maximum is now closest to the RDA.
In this real-world example, there is a divergence signature located to the west-southwest of the RDA with a circular outflow pattern. This occurred just after a downburst from a thunderstorm. Note that the maximum inbound velocity is closer to the RDA than the maximum outbound velocity.
The examples shown in the last few slides were of conceptual models of pure convergence and divergence on a single point in space. This was also shown in the real-life downburst signature you just saw. However, areas of convergence and divergence can also focus along a linear feature.
Here is a basic diagram of a convergent velocity signature focused along a linear feature. As you can see here, both the maxima still lie along the same radial with the outbound velocity maximum closest to the RDA. The exception is that these maxima are elongated across a number of radials at about the same range from the RDA.
Same thing here for the divergent velocity signature. Again, both maxima are elongated across a number of radials, but now the inbound maximum is closest to the RDA.
Here is a real-world example of a linear storm-scale convergence signature. In this case, a QLCS is approaching the RDA from the west, and a segment of the line is bowing out at this point, creating an enhanced convergence signature. Areas of enhanced convergence along a line segment could lead to mesovortex formation, which can enhance the wind threat and increase the probabilities of a tornado in areas of vorticity that are generated.
When examining pure rotational patterns, the velocity maxima are equidistant from the radar. Whether the pattern is cyclonic or anticyclonic is dependent upon whether the inbound maximum is on the left side or the right side of the signature, as seen by the RDA. With cyclonic rotation, the inbound maximum is on the left hand side, while the inbound maximum is on the right hand side with anticyclonic rotation.

Velocity maxima oriented any other way means some combination of rotation and convergence or divergence is occurring.

Again, for the following examples, the RDA is located to the south of the velocity signature.
Here is a basic example of a pure cyclonic rotational signature. As you can see here, both of the velocity maxima are equidistant from the RDA with the maximum inbound velocities on the left side of the signature.
Now with the pure anticyclonic rotational signature, both velocity maxima are again equidistant from the radar with the inbound velocity maximum on the right side of the signature.
Now to make things more complicated, we will show combinations of both rotation and convergence or divergence. This is an example of cyclonic convergence. First note that both the maxima are not on the same radial and not equidistant from the radar. Here, the outbound maximum is closest to the RDA, signifying convergence, and the inbound maximum is to the left, signifying cyclonic rotation.
Here is an example of cyclonic divergence. The inbound maximum is closest to the RDA, signifying divergence, and the inbound maximum is to the left, signifying cyclonic rotation.
Here is an example of anticyclonic convergence. The outbound maximum is closest to the RDA, signifying convergence, and the inbound maximum is to the right, signifying anticyclonic rotation.
Finally, here is an example of anticyclonic divergence. The inbound maximum is closest to the RDA, signifying divergence, and the inbound maximum is to the right, signifying anticyclonic rotation.
Here is a real-world example of storm-scale signatures through various tilts of what would become a tornadic supercell. Note that the RDA is located to the south-southwest of the storm. In the upper-left panel (0.5° tilt), you see a cyclonic convergence signature with the storm. The next two elevation scans shown in this example (1.8° tilt in the upper-right panel and 3.1° tilt in the lower-left panel) are close to “pure” cyclonic rotation. The 10.0° tilt (lower-right panel) is an example of storm-top divergence.
Let’s go ahead and summarize storm-scale velocity signatures. Convergence signatures have the velocity maxima lie along the same radial with the outbound maximum closest to the radar. Divergence signatures have the velocity maxima lie along the same radial with the inbound maximum closest to the radar.

Cyclonic rotation signatures have the velocity maxima equidistant from the radar with the inbound maximum to the left, as seen from the radar. Anticyclonic rotation signatures have the velocity maxima equidistant from the radar with the inbound maximum to the right, as seen from the radar.

Velocity maxima oriented any other way means some combination of rotation and convergence or divergence is occurring.