APPENDIX: Suggested Warning Methodology

Screen, Rank, Analyze, Decision (SRAD)

- 1. <u>Screen</u> the storms that threaten life and property over your CWA.
 - <u>Severe Hazards (tornado/wind/hail)</u>: Load a 4-panel display showing a 60-minute loop of MRMS': Reflectivity at Lowest Altitude, Maximum Estimated Size of Hail (MESH) and 60-min MESH Tracks, 60-min 0-2 km Rotation Tracks, and Vertically Integrated Ice (Note: An alternative could be a single-site lowest-tilt, Base Reflectivity, 60 minute time lapse loop with algorithm overlays. Use this alternative display if the MRMS products are experiencing latency.)
- 2. <u>**Rank**</u> the storms by order of threat. Identify the highest ranked storm. Factors to consider include:
 - Near-storm environment
 - Storm reports
 - Rapidly-intensifying storms
 - Deviant motion (i.e., right-mover, left-mover)
 - Convective mode (ordinary cell, multicell, supercell, derecho, etc.)
 - Maximum Expected Size of Hail (MESH) value
 - Azimuthal shear / Rotation Tracks values
 - Signatures: Inflow notch, three-body scatter spike (TBSS), hook echo, Tornado Debris Signature (TDS), rear inflow jet (RIJ) etc.
 - Societal / population considerations
 - Storms which are under-warned or have a warning that's due to expire soon (<10 min)

Go to Step 4 to immediately issue a warning for your highest ranked storm if:

- It exhibits a high confidence severe signature (e.g., TDS) and/or it has a high confidence report, and
- It's unwarned, under warned, or has a warning set to expire in less than 5 minutes.

Otherwise, go to step 3.

- 3. <u>Analyze</u> the highest ranked storm's structure and hazards.
 - Use the "All Hazards Decision Chart" as a quick reference.
 - Use the Warning Decision Cycle checklists as detailed reference.
 - Updraft Strength
 - Tornado
 - Severe Hail
 - Severe Wind
- 4. Generate your <u>**Decision**</u> using WarnGen. Collaborate with your warning team members. Consider the following factors when determining motion, duration, polygon orientation, and wording:
 - Tornado

- Choose WarnGen Track type: "One Storm" and track the low-level vortex, but regard the parent storm's motion.
- Be sure to account for possible mesocyclone occlusion(s) and motion uncertainty in your polygon (don't try to be too precise).
- Capture multiple threats in close proximity with a single polygon when necessary.
- Avoid:
 - "Tornado Emergency" wording unless there is very high confidence of a significant (EF2+) tornado moving into an urban area.
- Non-mesocyclonic: Track the updraft interaction with the low-level boundary(ies).
- Severe Hail/Wind
 - <u>Individual cell</u>: Choose WarnGen Track type: "One Storm" and track the updraft/downdraft interface region; be sure to include both the updraft and downdraft regions in your polygon.
 - Supercell: Anticipate deviant motion; include the Rear Flank Downdraft (RFD) in your polygon.
 - <u>Multicell</u>: Choose WarnGen Track type: "One Storm" and track the area where cells mature; ensure polygon includes existing severe threat as well as anticipates new cell development.
 - Bow Echo/QLCS: Choose WarnGen Track type: "Line of Storms" and track the gust front; include trailing severe winds and hail in your polygon.

NOTE: One SRAD cycle (steps 1-4) should take about 5 minutes (with experience).

- 5. Repeat the SRAD process until no new warnings are required.
 - Then, use the SRAD process to create Severe Weather and/or Flash Flood Statements.

WDTD Suggested Warning Methodology: Screen, Rank, Analyze, Decision (SRAD)

Warning Decision Cycle Checklists

Temperature Levels

	0° C	-10°	-20° C	EL
Height (ft ARL)				

Updraft Strength Checklist

Feature	Comments (Do not take thresholds as inflexible values)
Reflectivity Height	 Do high reflectivities extend to high altitudes? 50 dBZ above -20°C suggests a strong updraft MRMS 50 dBZ thickness above the melting level of 16 kft suggests a powerful updraft 60 dBZ above -20°C suggests a powerful updraft 50 dBZ above the equilibrium level suggests an extreme updraft
Low-level Inflow Notch	Does the storm possess a low-level inflow notch? Note: Rarely seen beyond 70 nm from single site radar.
Weak Echo Region (WER)/Bounded Weak Echo Region (BWER)	 Is there a WER/BWER? Does WER persist > 5-10 min? Use Reflectivity from surface to -10°C to identify a WER BWERs are best seen at -10°C Note: BWERs rarely exceed 3 nm wide and extend colder than -20°C. BWERs are more difficult to see in MRMS than single radar.
ZDR Column Height	 How high has the ZDR column extended during the past ~15 min? ZDR column ≤ -10° C suggests a strong updraft Note: ZDR columns rarely extend colder (higher) than -20°C
Mesocyclone Strength	 Is there a meso? How strong? Calculate rotational velocity (Vr) using the max and min velocities with the midlevel (~4-20 kft AGL) meso Vr = 20-29 kts indicates a weak meso Vr = 30-39 kts indicates a moderate meso Vr = 40+ kts indicates a strong meso Note: Known as the "20, 30, 40 rule." Relax these criteria beyond ~80 nm Determine the mesocyclone's peak value on the MRMS 3-6 km Azimuthal Shear product Values > 0.01 s⁻¹ indicate a moderate mesocyclone
Low-level Convergence	 Calculate the magnitude and depth of the low-level convergence. Magnitude (ΔV) > 50 kts suggests a strong updraft Depth > 10 kft is impressive, > 15 kft is rare
Storm top Divergence	 Does the storm exhibit strong storm top divergence? Note: Calculate ΔV using the max and min velocities around the updraft summit. ΔV > 75-100 kts suggests severe updraft ΔV > 130-160 kts suggests significant severe updraft Note: Beware, true max velocity difference may be located between radar elevation slices.
Trends	Evaluate the overall trend of the updraft strength signatures (above).

Tornado Checklist

Feature	Comments (Do not take thresholds as inflexible values)						
	Mesocyclonic Tornado only						
Near Storm Environment	Is the supercell in a favorable environment? Significant Tornado Parameter (STP) (effective layer) > 1 Effective Bulk Wind Difference (EBWD) > 40 kt Effective Storm Relative Helicity (ESRH) > 150 m²s⁻² 100-mb Mixed Layer Lifted Condensation Level (MLLCL) < 1000 m AGL 100-mb Mixed Layer Convective Available Potential Energy (MLCAPE) >1500 J/kg 100-mb Mixed Layer Convective Inhibition (MLCIN) < 50 J/kg within last hour Note: Be careful to evaluate the environment in the storm's inflow, not within the storm itself.						
Mesocyclone LLRV	 Given favorable mesocyclonic tornado environment, Low-Level Rotational Velocity (LLRV): LLRV > 30 kts ~15% chance of tornado LLRV > 60 kts ~ 50% chance of tornado 						
MRMS Azimuthal Shear Rotation Tracks	Is there strong low- and mid-level azimuthal shear (AzShear)? A tornado is likely if: • 0-2 km Rotation Track > 15x10 ⁻³ s ⁻¹ • 3-6 km Rotation Track > 10x10 ⁻³ s ⁻¹ Note: More research relating tornado probabilities and MRMS AzShear needed. Use cautiously.						
Mesocyclone Base Altitude (ARL)	 Given Mesocyclone Detection Algorithm (MDA) rank ≥ 5 (moderate intensity): Meso base > 1000 m means ~13% chance of tornado Meso base < 1000 m means ~40% chance of tornado Note: Not applicable if lowest elevation scan is >~ 1000 m 						
Low-level Storm- Relative Inflow	Is the storm's low level inflow accelerating and > the near storm background surface flow? Note: This indicates that roots of updraft are surface-based. Look in lowest 3 kft AGL (range limited). Accelerating either from front or rear flank. Best view requires large radial storm motion component.						
Low-level Convergence	Is there significant low-level convergence beneath the mid-level meso? Note: Not applicable if lowest scan is > ~1000m AGL.						
	Non-Mesocyclonic Tornado only						
Near Storm Environment	Is the storm in a favorable environment? • 0-1 km Lapse Rate > 9°C/km • 0-3 km MLCAPE > 100 J/kg • MLCIN < 25 J/kg • Significant surface vertical vorticity with a slow moving wind shear boundary Note: Don't wait for WER/BWER/meso. Boundary is not associated with a density current.						
	Both Types						
Updraft Strength	See Updraft Strength checklist						
Reports	 Is there a tornado report? How confident are you of the report? Public = Lowest confidence Spotter/Chaser = Medium confidence Multiple reports w/damage = High confidence 						
TVS/TS Strength	 Is there a Tornadic Vortex Signature (TVS) or Tornado Signature (TS)? How strong? TVS/TS ΔV = 50-70 kts means low chance of tornado TVS/TS ΔV = 70-90 kts means moderate chance of tornado TVS/TS ΔV = > 90 kts means significant chance of tornado 						
Tornado Debris Signature (TDS)	Is there a TDS? • Valid velocity circulation collocated with o Reflectivity > 30 dBZ o CC < 0.9 • Is there height continuity? o Less than 8,000 ft (EF0/EF1) o 10,000 ft to 15,000 ft (EF2/EF3) o Greater than 18,000 ft (EF4/EF5) Note: Not required, but adds confidence. Don't wait for a TDS to issue a Tornado Warning.						

Severe Hail Checklist

Feature	Comments (Do not take thresholds as inflexible values)
Near Storm Environment	Is this storm in a favorable environment? Severe (\geq 1") hail: • MUCAPE \geq 400 J/kg • Effective Bulk Wind Difference (EBWD) \geq 29 kt Significant (\geq 2") hail: • Significant Hail Parameter (SHIP) > 1 • Large Hail Parameter (LHP) \approx 4 \approx Golf ball; \approx 8 \approx Baseball"; \approx 14 \approx Softball hail • Most Unstable CAPE (MUCAPE) \geq 1300 J/kg • 700-500 mb lapse rates (LR ₇₋₅) \geq 6.5°C/km • Effective Bulk Wind Difference (EBWD) \geq 39 kt • Surface to Equilibrium Level Bulk Shear (Shear _{EL}) \geq 47 kt for \geq 3.5" hail
Reports	 Is there a severe hail report? How confident are you of it? Public = Lowest confidence Multiple reports, measured, w/damage = Highest confidence
Individual Storm Type	Is the storm an ordinary cell or a supercell? Ordinary Cell: • ≤ Golf ball (< 1.75") hail is possible if the updraft persists for > 15-20 minutes Supercell with a deep, persistent (≥ 30 min) mesocyclone: • MRMS 3-6 km current Rotation Track ≥ 10x10 ⁻³ s ⁻¹ ≈ severe hail • Vr > 27-41 kt ≈ significant (≥ 2") hail; Vr > 39-56 kt ≈ giant (≥ 4") hail possible
Convective Mode	 Is the storm discrete or non-discrete ("messy")? Discrete storms experience less interference and updraft longevity is maximized
Reflectivity Height	 Do high reflectivities (Z) extent upward to hail growth zone? 50 dBZ thickness above the melting level ≥ 16 kft ≈ severe hail 60 dBZ above -20°C ≈ significant (> 2") hail 50 dBZ above the equilibrium level (EL) ≈ significant (> 2") hail
Three-Body Scatter Spike (TBSS)	Does the core produce a pronounced TBSS? Note: Denoted by extremely high ZDR and very low CC located radially behind the high Z hail core. • Suggests severe (≥1") hail Note: Absence of a TBSS does not indicate the absence of severe hail.
Dual-Polarization- based Signatures	 Does the core possess favorable dual-pol signatures? Z: 45-59 dBZ ≈ Hail possible, ≥ 60 dBZ ≈ Hail likely ZDR: -0.3 to 1 dB ≈ Dry or large hail, > 1 dB ≈ More liquid CC: 0.93 - 0.97 ≈ 1-2" hail, 0.7-0.9 ≈ ≥ 2" hail KDP: < 1°/km ≈ Mostly dry hail, > 3°/km ≈ Rain/hail combo or melting hail
Storm Top Divergence	Does the storm exhibit strong storm top divergence? NoteCalculate ΔV using the max and min velocities around the updraft summit. • $\Delta V > 70-102$ kt ≈ 1 " hail • $\Delta V > 115-147$ kt \approx golf ball (≥ 1.75) hail • $\Delta V > 174-207$ kt \approx baseball (≥ 2.75) hail • $\Delta V > 233-267$ kt \approx giant (≥ 4 ") hail NoteBeware, true max velocity difference may be located between radar elevation slices.
Hail Detection Algorithm (HDA)	 What does the Hail Detection Algorithm (HDA) suggest? ≥ 1" Hail Detection Algorithm (HDA) ≈ Severe (≥1") hail
MRMS Maximum Estimated Size of Hail (MESH)	What does the MRMS Maximum Estimated Size of Hail (MESH) product suggest? • ≥ 1" MESH ≈ Severe (≥1") hail Note: MESH underestimates hail size in: Fast moving, highly-tilted storms, supercells which possess a giant Bounded Weak Echo Region (BWER); and storms with low-density, dry hailstones.

Severe Wind Checklist

Feature	Comments (Do not take thresholds as inflexible values)									
Individual Cell Downburst only										
Near Storm Environment	Is the storm in a favorable environment? • Wet Microburst (MB): • 0-3 km max Theta-e diff (Δθ _e) > 25°C • DCAPE > 1250 J/kg • SBCAPE > 1000 J/kg • 0-3 km lapse rate > 7°C/km • MLLCL Height > 1000 m • Dry Microburst: • Inverted-V sounding (mid-level based) • Weak Effective Bulk Shear • MUCAPE > 0 J/kg • MLLCL Height > melting level • Weak boundary layer winds • 0-3 km LR ~ dry or superadiabatic									
Characteristics	 Does the individual cell exhibit favorable characteristics? Strong elevated precip core rapidly forms Descending core bottom MARC velocity signature (0°C to LCL) ΔV > 15 kts Wet microburst: Wet hail signs (TBSS, CC ~ 0.93-0.96, KDP > 3°/km, ZDR decrease) Note: Beware low Z cells with super high LCLs at 0°C and/or strong wind in mixing layer. 									
	Supercell Rear Flank Downdraft (RFD) only									
Near Storm Environment	Is the supercell in a favorable environment? • Eff Bulk Shear > 30 kt • Low LCL • Large CAPE • Steep sub-cloud adiabatic lapse rate									
Characteristics	 Does the supercell rear-flank downdraft (RFD) exhibit favorable characteristics? Same as Individual Cell Downburst characteristics plus: Mesocyclone with MDA rank 5+ (Vr > 30 kt), developing large hook echo (>50 dBZ), DCZ > 10 kft (>15-20kt is optimal) 									
	MCS/Horizontally-Driven Wind only									
Near Storm Environment	Is the MCS/horizontally driven wind in a favorable environment? Widespread lift for storms MUCAPE > 2000 J/kg DCAPE > 980 J/kg Of km Mean Wind > 16 kt Effective Bulk Wind Difference (EBWD) > 20 kt 									
Characteristics	Does the MCS/horizontally-driven wind exhibit favorable characteristics? • Strong leading reflectivity gradient • Bow Echo • Rear-inflow jet (RIJ) • MARC ΔV > 50 kt at 3-5 km AGL • DCZ > 10 kft (>15-20 kft is optimal) • Gust front speed matches system speed • Linear WER along leading edge Note: A mesovortex coupled with a RIJ produces strongest wind.									
	All Types									
Reports	 Is there a severe wind report? How confident are you of the report? Tree down=Low confidence, Multiple trees/powerlines down=Higher confidence, Structural damage=High confidence, Official measured gust=Highest confidence 									
Reflectivity Aloft	 Does the storm exhibit a rapidly growing, high reflectivity core at the melting level? Precip size distrib: 40 dBZ = poor, 50 dBZ = weak, 60 dBZ = significant, 70 dBZ = high Note: Downdraft by evap. cooling. Lower dBZ threshold dry MB w/ high MLLLCL & strong ML wind. Melting hailstones: 50 dBZ = marginal, 60 dBZ = significant, 70 dBZ = High 									
Low-level Radial Velocity	Is there strong, low-level, radial velocity? Downburst: > 30 kt within 20 nm of the radar, RIJ: > 50 kts within 20 nm of the radar Note: For downbursts, radial V < actual V. For RIJs, radial V > actual V. Note: Threshold decreases w/ increasing range. RIJ wind is about 20-30% stronger aloft than at the surface. Sfc winds are stronger than winds aloft near downbursts & low-level mesos/mesovortices. 									
Storm Motion	 Is the storm fast-moving? Downburst-generated sfc wind vector + storm motion vector ≈ Actual sfc wind vector Max wind ≈ Gust front motion X (1.4-1.7) Note: Not a significant factor for elevated storms and LP supercells. 									

AII	Hazar	ds Decisio	n Chart
Tornado	Severe Hail	Severe Wind	Flash Flood
Mesocyclonic		Individual Cell Downbursts	Individual Cell
Near Storm Environment: Significant Tornado Parameter (STP) (effective layer) > 1, Effective Bulk Wind Difference (EBWD) <u>></u> 39 kt, effective SRH >150	Near Storm Environment: ≥1": MUCAPE ≥ 400 J/kg, Effective Bulk Wind Difference (EBWD) ≥ 29 kt ≥2": SHIP > 1, LHP ≈ 4 ≈ Quarter: ≈ 8 ≈ Baseball: ≈	Near Storm Environment: <u>Wet Microburst</u> 0-3 km max Δθ _e > 25°C, DCAPE > 1250 J/kg, SBCAPE > 1000 J/kg, 0-3 km lapse rate > 7°C/km, MLLCL > 1000 <u>Dry Microburst</u> Inverted-V sounding (midlevel based), MUCAPE > 0 J/kg, MLLCL height> melting level, weak Effective Bulk Wind Difference (EBWD), weak	Near Storm Environment: High PW & RH (>70%) in convective layer, warm cloud layer > 10 kft, weak convective-layer wind < 10 kt Storm Characteristics: Slow motion < 10 kt, Z > 50-60 dBZ (45-55 dBZ trop. env.), low echo centroid CC > 0 96. ZDR = 2-56 dB
m*s *, MLLCL < 1000 m, MLCAPE > 1500 J/kg, MLCIN < 50 J/kg within last	14 ≈ Softball hail, MUCAPE ≥ 1300 J/kg, EBWD ≥ 39	superadiabatic	trop. env.), KDP > 1°/km Multicell
hour Storm Characteristics: Discrete supercell, strengthening updraft,	<pre>kt, /00-500 mblapse rates (LR 7.s) ≥ 6.5 C/km, Surface to EL Bulk Shear ≥ 47 kt for ≥ 3.5" hail Storm Characteristics:</pre>	Storm Characteristics: Strong, elevated precip core rapidly forms, descending core bottom, MARC (0°C to LCL) ΔV > 15 kt, wet hail signature (TBSS, CC ~ 0.93- 0.96, KDP > 3°C/km), low-level V > 30 kt within 20 nm of radar, fast storm motion Note: Beware of low Z cells which LCI set 07° condor ethoronwind in mixing layer	Near Storm Environment: High PW & RH (>70%) in convective layer, LLJ transporting high moisture, slow MBE motion, slow (< 15 kt) motion of forcing mechanism, upwind instability
into a strong low-level meso, TVS. TDS means tormado is likely occurring	21*: Discrete storm, WER, 50 dBZ thickness above the melting level > 16 kft, Z >	Rear Flank Downdraft (RFD) Near Storm Environment: Effective Bulk Wind	collisions; slow motion; training / backward propagation < 15 kt, leading, parallel, or adjoining stratiform MCS
Non-mesocyclonic	60 dBZ, CC = 0.93-0.97, Storm-Top Divergence	Difference (EBWD) > 39 kt, Iow LCL, large CAPE, steep sub-cloud adiabatic lapse rate	Antecedent Ground Conditions
Near Storm Environment: 0-1 km lapse rate > 9°C/km, 0-3 km MLCAPE > 100 J/kg, MLCIN < 25J/kg,	(STD)∆V > 70-102 kt, Three Body Scatter Spike (TBSS), HDA ≥ 1*, MESH ≥ 1*	Storm Characteristics: Meso w/MDA rank5+ (Vr > 30 kt), developing large hook echo (>50 dBZ), DCZ > 10 kt (> 15-20 kt optimal), fast motion	Poor permeability (urban land use, clay soil, rock, ice, desert pavement, burn scars, etc.), poor drainage, saturated soil (recent rain, snowmelt, etc.), sloping terrain (mtns, canvons, hills, etc.)
significant surface vertical vorticity associated with a	2": Discrete supercell, BWER, updraft persists >	MCSs/Horizontally-Driven Wind	Precipitation Accumulation
slow moving wind shear boundary.	30 min, 60 dBZ above - 20°C, 50 dBZ above the EL, CC ≈ 0 7-0 0 7DP ≈ 0 dB	Near Storm Environment: Widespread Int, UCAPE > 980.J/kg, 0-6 km mean wind > 16 kt, MUCAPE > 2000 J/kg, Effective Bulk Wind Difference (EBWD) > 20 kt	Does rainfall meetflash flood thresholds? 1. Pick your optimal precip source: Dual-Pol, 1. Pick your optimal precip source: MoMo
storm Characteristics: Strong, rapidly growing updrafts via development of reflectivity core at -10° C.	STD ΔV > 130-162 kt, Peak Rotational Velocity (Vr) >27- 41 kt, MESH <u>></u> 2*	Storm Characteristics: Strong leading Z gradient, bow echo, Rear Inflow Jet (RIJ), MARC ΔV > 50 kts at 3-5 km AGL, Deep Convergence Zone (DCZ) > 10 kft	egacy Drift, nrift, plas hrift, wirkwo a. Assess radar QPE blases b. Compare QPE with observations 2. Use FFMP for decision making
TVS. TDS means tornado is likely occurring	<u>></u> 4": STD ∆V > 233-267 kt, Peak Vr > 39-56 kt	(> 15-20 kft is optimal), gust front speed matches system speed, linear WER along leading edge, fast storm motion	 a. Ratio > 100%, diff > 0" b. Look at 1-, 3-, and 6-hour durations 3. Is additional rainfall occurring or imminent?
		Note: A mesovortex w/R/J produces strongest wind.	

NWS Hail Size Chart

Descr	ription	Diameter	Updraft Speed			
BB		< ¼"	< 24 mph			
Pea	00000000	1⁄4"	24 mph			
Marble / Plain M&M		1/2"	35 mph			
Dime	And	⁷ / ₁₀ "	38 mph			
Penny	21)	3⁄4"	40 mph			
Nickel		⁷ / ₈ "	46 mph			
Quarter		(Severe) 1"	49 mph			
Half Dollar		1 ¼"	54 mph			
Walnut / Ping-Pong Ball		1 ½"	60 mph			
Golf Ball		1 ¾"	64 mph			
Hen Egg / Lime		(Significant) 2"	69 mph			
Tennis Ball	-	2 ½"	77 mph			
Baseball		2 ¾"	81 mph			
Teacup / Large Apple		3″	84 mph			
Grapefruit		4"	98 mph			
Softball		4 ½"	103 mph			
CD / DVD	Ó	4 ¾″	105 mph			
10						

stimated Hail Type/Size	SIGNATURES	ZDR: 03 to 1 dB = Dor or lorge hail	 > 1 dB ≈ More liquid 	<u>KDP</u> : <1°/km ≈ Mostly dry hail >3°/km ≈ Rain/hail combo or melting hail			ignature	ZDR < 1 dB	KDP < 1°/km	ZDR ≈ 1-2 dB	ZDR ≈ 1-2 dB KDP > 0.5°/km		KDP ≈ 0°/km	ZDR > 2 dB	KDP > 4-5°/km	ZDR ≈ 0 dB or lower	KDP not displayed	
	OL RADAR HAIL	Z : 46 60 dD7 – Unil noce	260 dBZ = Hail likely	3	0.93 - 0.97 ≈ 1-2" hail 0.70 - 0.90 ≈ >2" hail	1	0)	Z > 55 dBZ	CC ≈ 0.95-0.97	Z > 55 dBZ	CC ~0.93-0.96	Z ≈ 45-55 dBZ	CC > 0.98	Z > 55 dBZ	CC = 0.92-0.96	Z > 55 dBZ (>45 dBZ)	CC < 0.9 (possibly 0.7)	
	DUAL-PO						Hail Event Type	Severe Hail	(with little rain)	Severe Hail Mixed	w/Rain	Sub-Severe Dry Hail		Sub-Severe Melting	Hail	Significant (≥2″) Hail		
Radar Es	op Divergence	Max Hail Size (in.)	Quarter (1")	Golf ball (1 ¾")	Baseball (2 ¾")	Grapefruit (4")	Adapted from Witt and Nelson, 1991	socyclone	Peak Rotational Velocity (kt)	27-41	39-56 Source: Blairet al., 2011	ter Spike > 0.4 – 0.8 in.*	T SW T ZDR			KDP		7
-	Storm-To	^b eak ΔV (kts)	70-102	115-147	174-207	233-267		Me	Hail Size (in.)	L.75" to 2.00"	-4"	Three Body Scatt	174 Jacob 19			11 1 V V		7

"Valid for S-bandradar only, Source: Kumjian et al., 2010