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ABSTRACT

This paper contains a description of the most recent version of the hydrometeor classification algorithm for

polarimetric Weather Surveillance Radar-1988 Doppler (WSR-88D). This version contains several modifi-

cations and refinements of the previous echo classification algorithm based on the principles of fuzzy logic.

These modifications include the estimation of confidence factors that characterize the possible impacts of all

error sources on radar measurements, the assignment of the matrix of weights that characterizes the clas-

sification power of each variable with respect to every class of radar echo, and the implementation of a class

designation system based on the distance from the radar and the parameters of the melting layer that are

determined as functions of azimuth with polarimetric radar measurements. These additions provide con-

siderable flexibility and improve the discrimination between liquid and frozen hydrometeors. The new

classification scheme utilizes all available polarimetric variables and discerns 10 different classes of radar

echoes. Furthermore, a methodology for the new fuzzy logic classification scheme is discussed and the results

are illustrated using polarimetric radar data collected with the Norman, Oklahoma (KOUN), WSR-88D

prototype radar during a mesoscale convective system event on 13 May 2005.

1. Introduction

Dual-polarization radar is a unique instrument for the

classification of radar echoes. Having dual-polarization

capability is essential for discriminating between meteo-

rological and nonmeteorological scatterers and for dis-

tinguishing between different hydrometeor types, such

as rain, hail, graupel, and snow of different habits. Fur-

thermore, knowledge of the hydrometeor type within

the radar resolution volume is required for choosing an

appropriate polarimetric rain rate relation to accurately

quantify the amount of precipitation (Giangrande and

Ryzhkov 2008).

Principles of fuzzy logic form the basis for most po-

larimetric classification algorithms; these were first ex-

plored by Straka and Zrni�c (1993) and Straka (1996)

and have since been further refined into more sophis-

ticated classification routines described by Zrni�c and

Ryzhkov (1999), Vivekanandan et al. (1999), Liu and

Chandrasekar (2000), Zrni�c et al. (2001), Schuur et al.

(2003), Keenan (2003), Lim et al. (2005), and Marzano

et al. (2008), among others.

The hydrometeor classification capability of a polari-

metric prototype of the Weather Surveillance Radar-1988
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Doppler (WSR-88D) in an operational environment was

tested in Oklahoma in 2002–03 during a demonstration

project called the Joint Polarization Experiment (JPOLE;

Ryzhkov et al. 2005b). Such a capability, together with

other polarization products, was very well received by the

National Weather Service (NWS) forecasters during this

operational demonstration (Scharfenberg et al. 2005).

One of the first versions of the National Severe Storms

Laboratory (NSSL) hydrometeor classification algorithm

(HCA) demonstrated a remarkable level of skill in de-

tecting hail, which was verified during the JPOLE cam-

paign (Heinselman and Ryzhkov 2006). Nonetheless, fur-

ther validation studies revealed several problems with

early versions of HCA that had to be addressed. These

problems are also inherent in other classification routines

that are utilized elsewhere.

First, it was found that the quality of the classification

depends on the quality of the polarimetric radar mea-

surements. It became evident that radar estimates with

enhanced measurement errors should be given lower

weight in the classification scheme. Second, due to an-

tenna beam broadening at longer distances, the radar

resolution volume may contain liquid, frozen, and mixed-

phase particles, and hence certain rules for class desig-

nation should be formulated based on the size of the

sampling volume as well as on the height and depth of

the melting layer. Finally, discrimination between con-

vective and stratiform precipitation types is necessary to

facilitate better distinction between dry–wet graupel

and dry–wet snow for which the polarimetric variables

overlap and hence may not be well separated.

Since JPOLE, the NSSL HCA scheme was modified

by incorporating additional routines that account for

possible errors in radar measurements, beam broaden-

ing, the relative location of the radar sampling volume

with respect to the melting layer (ML), and the nature

of the precipitation (i.e., convective versus stratiform).

The objectives of this paper are to describe the most

recent version of the HCA, which was recommended

by the U.S. National Weather Service for initial de-

ployment on the network of polarimetrically upgraded

WSR-88Ds, and to illustrate its performance in the case

of a mesoscale convective system (MCS) observed in

central Oklahoma on 13 May 2005.

The content of the paper is as follows. After the in-

troduction, the general structure of the algorithm is

described in section 2 where the classes of radar echoes

are also listed and the details of the aggregate computa-

tion are given. Section 3 introduces the confidence vector,

which depends on the statistical and physical parame-

ters affecting the measurements. Constraints on the

allowed classes are imposed using the distance from the

radar, beamwidth, and parameters of the melting layer

as discussed in section 4. The case study is presented in

section 5, which is followed by a summary and conclu-

sions in section 6.

2. General structure of the algorithm

a. Echo classes and radar variables

The HCA discriminates between 10 classes of radar

echo: 1) ground clutter, including that due to anomalous

propagation (GC/AP); 2) biological scatterers (BS); 3)

dry aggregated snow (DS); 4) wet snow (WS); 5) crystals

of various orientations (CR); 6) graupel (GR); 7) ‘‘big

drops’’ (BD); 8) light and moderate rain (RA); 9)

heavy rain (HR); and 10) a mixture of rain and hail

(RH). The big-drops category designates rain with a

drop size distribution skewed toward large raindrops.

This usually implies the presence of drops bigger than

3 mm and the deficit of smaller drops. Big drop signa-

tures are generally due to size sorting associated with

either convective updrafts often exemplified with ZDR

columns (Wakimoto and Bringi 1988) or wind shear and

veering, which cause ZDR ‘‘arcs’’ (Kumjian and Ryzhkov

2008). Both signatures have important prognostic value

because the ZDR columns are common in the initial stages

of convective development (Bringi and Chandrasekar

2001) and ZDR arcs characterize storm-relative helicity

in supercell storms (Kumjian and Ryzhkov 2008). The

class of biological scatterers includes insects, birds, and

bats. Other nonmeteorological scatterers in the atmos-

phere such as tornadic debris or military chaff may fall in

the category of either GC/AP or BS.

Six radar variables are directly utilized for discrimi-

nation. These are 1) the radar reflectivity factor at

horizontal polarization Z, 2) the differential reflectivity

ZDR, 3) the cross-correlation coefficient rhv between

horizontally and vertically polarized radar returns,

4) the specific differential phase KDP, 5) a texture pa-

rameter SD(Z) of the Z field, and 6) a texture param-

eter SD(FDP) of the field of differential phase FDP. The

parameters SD(Z) and SD(FDP) characterize the mag-

nitude of the small-scale fluctuations of Z and FDP

along the radial. The estimate of SD(Z) is obtained by

averaging Z data along the radial using a 1-km running-

average window (i.e., four data points spaced 0.25 km

apart are averaged), subtracting the smoothed esti-

mates of Z from the original values, and calculating the

root-mean-square (RMS) value of the residuals. Here,

SD(FDP) is calculated in a similar manner, but because

FDP has inherently large fluctuations, a 2-km running

average is utilized. In addition to the polarimetric var-

iables, the mean Doppler velocity V is utilized for dis-

crimination between hail and GC/AP, although it is not
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included in the set of input variables for the fuzzy logic

classifier.

Due to the parameter range of KDP it is more con-

venient to use its values in logarithmic scale rather than

in linear scale. Hence, instead of KDP in degrees per

kilometer, we introduce the parameter LKdp, which is

determined as follows:

LKdp 5 10log(KDP) if KDP . 10�3 8 km�1

LKdp 5�30 if KDP # 10�3 8 km�1.

(1)

Before applying the classification procedure, Z, ZDR,

and rhv are smoothed along each radial using a 1-km

averaging window for Z and a 2-km window for ZDR

and rhv. In addition, a signal-to-noise ratio (SNR) at

horizontal polarization and a ratio of noise powers in

the two orthogonal channels are used for noise correc-

tion of ZDR and rhv (Schuur et al. 2003). Two smoothed

radial profiles of FDP are obtained by editing and using

two averaging windows corresponding to nine consec-

utive samples in the case of ‘‘lightly filtering’’ (2-km

window width if the sample spacing is 0.25 km) and

25 successive samples for ‘‘heavily filtering’’ (6-km

window width). Both Z and ZDR are corrected for at-

tenuation in precipitation using heavily filtered FDP by

adding the estimated biases

DZatt(dB) 5 0.04FDP(8) and

DZatt
DR(dB) 5 0.004FDP(8)

(2)

to the measured values of Z and ZDR (Ryzhkov and

Zrni�c 1995).

Finally, two estimates of KDP are obtained from a

slope of a least squares fit of the filtered FDP using two

range intervals corresponding to 9 and 25 consecutive

range gates. A lightly filtered KDP is used for classifi-

cation if Z . 40 dBZ and a heavily filtered KDP is se-

lected otherwise (Ryzhkov and Zrni�c 1996).

b. Computation of aggregation values

The classification scheme presented here combines

the information content of the polarimetric variables.

This is done by assigning a typical range of values for the

various polarimetric variables to each class of radar

echo. Each range of values is quantified with a mem-

bership (weighting) function. Membership functions are

summed, or multiplied, or otherwise combined for each

class in a process called aggregation. The aggregated

value of a class characterizes the likelihood that this

particular class is associated with the values of variables

measured by the radar. An aggregation value Ai for the

ith class of radar echoes is defined here as

Ai 5

�
6

j51
Wij Qj P(i)(Vj)

�
6

j51
Wij Qj

, (3)

where P(i)(Vj) is a membership function (which char-

acterizes the distribution of the jth variable for the ith

class), Wij is a weight between 0 and 1 assigned to the

ith class and the jth variable, and Qj is an element of

the confidence vector assigned to the jth variable. The

classification decision is based on the maximal aggre-

gation value.

Note that in the HCA we use an additive aggregation

routine that implies a summation of inputs from dif-

ferent variables with certain weights. Other investiga-

tors have used multiplication or the combination of

addition and multiplication (e.g., Liu and Chandrasekar

2000; Lim et al. 2005). Early versions of the HCA (Zrni�c

et al. 2001; Schuur et al. 2003) employed ‘‘hybrid’’ ag-

gregation schemes in which the membership functions

of ZDR and KDP were constructed as products of P(i)(Z)

and conditional functions PZ

(i)
(ZDR) and PZ

(i)
(KDP), re-

spectively. Our experience shows that the hybrid

schemes are too vulnerable to the Z biases caused by

miscalibration and/or attenuation and therefore the choice

was made in favor of a simple additive aggregation

procedure.

The membership functions P(i)(Vj) are assumed to

have trapezoidal shape with a maximal value of 1 and a

minimal value of 0 (Fig. 1). The trapezoidal functions

are described by four parameters: x1, x2, x3, and x4.

These parameters are presented in Table 1 for each

of the 60 membership functions. Trapezoids adequately

approximate the symmetric shapes of the probability

distributions of radar variables as well as the asymmetric

[such as cross-correlation coefficient rhv; Zrni�c et al. (2006)];

FIG. 1. Trapezoidal membership function, where X is an arbitrary

polarimetric variable.
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this is not true for some other popular membership func-

tions like Gaussian or beta (e.g., Liu and Chandrasekar

2000; Lim et al. 2005), which are symmetric.

Parameters x1–x4 of the membership functions of

ZDR and LKdp depend on radar reflectivity for all four

categories of rain (BD, RA, HR, and RH). The de-

pendency is chosen to describe a nonrectangular region

in the Z, ZDR space where the typical pair of these

values resides for each of the four rain categories

(similar to Fig. 2a in Straka et al. 2000). Thus, functions

f1–f3 and g1–g2 determine the x1–x4 in Table 1 and are

given by

f1(Z) 5�0.50 1 2.50 3 10�3Z 1 7.50 3 10�4Z2,

f2(Z) 5 0.68� 4.81 3 10�2Z 1 2.92 3 10�3Z2, (4)

f3(Z) 5 1.42 1 6.67 3 10�2Z 1 4.85 3 10�4Z2,

and

g1(Z) 5�44.0 1 0.8 Z and

g2(Z) 5�22.0 1 0.5 Z, (5)

where the radar reflectivity Z is expressed in dBZ.

The matrix of weights W in (3) characterizes the dis-

criminating efficiency of each variable with respect to

a particular class. The elements of the matrix W are

presented in Table 2. As an example, rhv is the most

important variable for the identification of biological

scatterers (W23 5 1.0) followed by the texture parame-

ters of Z and FDP (W25 5 W26 5 0.8), ZDR (W22 5 0.6),

and LKdp, which does not have any diagnostic value for

biological scatterers (W24 5 0). As in Lim et al. (2005),

the matrix W is determined subjectively and its further

refinement based on objective criteria will be made in

future studies. One possible criterion to accomplish this

refinement is the methodology described by Park et al.

(2007). This methodology takes into account the degree

of overlap between the probability density functions of

TABLE 1. Parameters of the membership functions for 10 classes. Reflectivity-dependent parameters f1–f3 and g1–g2 are defined by Eqs.

(4) and (5), respectively.

GC/AP BS DS WS CR GR BD RA HR RH

P[Z(dBZ)]

x1 15 5 5 25 0 25 20 5 40 45

x2 20 10 10 30 5 35 25 10 45 50

x3 70 20 35 40 20 50 45 45 55 75

x4 80 30 40 50 25 55 50 50 60 80

P[ZDR(dB)]

x1 24 0 20.3 0.5 0.1 20.3 f2–0.3 f1–0.3 f1–0.3 20.3

x2 22 2 0.0 1.0 0.4 0.0 f2 f1 f1 0.0

x3 1 10 0.3 2.0 3.0 f1 f3 f2 f2 f1

x4 2 12 0.6 3.0 3.3 f1 1 0.3 f3 1 1.0 f2 1 0.5 f2 1 0.5 f1 1 0.5

P(rhv)

x1 0.5 0.3 0.95 0.88 0.95 0.90 0.92 0.95 0.92 0.85

x2 0.6 0.5 0.98 0.92 0.98 0.97 0.95 0.97 0.95 0.90

x3 0.9 0.8 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00

x4 0.95 0.83 1.01 0.985 1.01 1.01 1.01 1.01 1.01 1.01

P(LKdp)

x1 230 230 230 230 25 230 g1–1 g1–1 g1–1 210

x2 225 225 225 225 0 225 g1 g1 g1 24

x3 10 10 10 10 10 10 g2 g2 g2 g1

x4 20 10 20 20 15 20 g2 1 1 g2 1 1 g2 1 1 g1 1 1

P[SD(Z)(dB)]

x1 2 1 0 0 0 0 0 0 0 0

x2 4 2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

x3 10 4 3 3 3 3 3 3 3 3

x4 15 7 6 6 6 6 6 6 6 6

P[SD(FDP)(8)]

x1 30 8 0 0 0 0 0 0 0 0

x2 40 10 1 1 1 1 1 1 1 1

x3 50 40 15 15 15 15 15 15 15 15

x4 60 60 30 30 30 30 30 30 30 30
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each radar variable for different classes of radar echo.

More overlapping usually means lower values of weight.

3. Confidence vector

The quality of the radar echo classification is signifi-

cantly affected by the accuracy of the radar measure-

ments, which can be biased and noisy. The impact of the

measurements errors is accounted for in the aggregation

rule (3) via a confidence vector Q. In other words, for

each range gate, the jth radar variable is supplemented

with its confidence index Qj depending on its vulnera-

bility to several factors that can compromise the quality

of its measurement. These factors include 1) radar mis-

calibration, 2) attenuation, 3) nonuniform beam filling

(NBF), 4) partial beam blockage (PBB), 5) the magni-

tude of rhv (which determines the statistical errors of

all polarimetric variables), and 6) receiver noise. If the

quality of a certain radar variable is compromised in a

particular area of the radar echo, then it would be given

a lower weight in the classifier. The confidence vector is

defined as

Q 5 (Q1, Q2, Q3, Q4, Q5, Q6)

5 (QZ, QZDR, Qrhv, QKDP, QSDZ, QSDF), (6)

where the components Q1–Q6 are constructed (for con-

venience) as products of Gaussian functions that charac-

terize the impact of different factors on the measurement

errors. For example, a confidence index for the differ-

ential reflectivity QZDR is defined as a product of five

multipliers,

QZDR 5 FattFnbfFrhvFsnrFpbb, (7)

associated with five known sources of measurement

errors in ZDR: differential attenuation (Fatt), nonuni-

form beam filling (Fnbf), the value of rhv (Frhv), the

signal-to-noise ratio (Fsnr), and partial beam blockage

(Fpbb) (Bringi and Chandrasekar 2001; Ryzhkov 2007;

Giangrande and Ryzhkov 2005).

The factor Fatt is a Gaussian function of the measured

differential phase FDP, which is proportional to differ-

ential attenuation according to (2):

Fatt 5 exp �0.69
FDP

F
(Z)
DP

" #2
8<
:

9=
;. (8)

Although ZDR is corrected for differential attenuation

using (2), the accuracy of such a correction inevitably

degrades with increasing FDP because of the uncer-

tainty in the coefficient of the proportionality between

DZatt
DR and FDP in (2) due to drop size distribution

variations and the possible presence of melting hail

(Ryzhkov et al. 2007). The right side of Eq. (8) is de-

fined in such a way that the factor Fatt decreases twice

once FDP reaches a threshold value FDP
(Z). The threshold

FDP
(Z) is an adaptable parameter in the HCA, which is

currently set to 2508.

Similarly, the factor Fnbf is defined as

Fnbf 5 exp �0.69
DZDR

DZ
(t)
DR

" #28<
:

9=
;, (9)

where DZDR is a ZDR bias due to the vertical and hor-

izontal gradients of Z and ZDR within the radar reso-

lution volume (Ryzhkov 2007):

DZDR 5 0.02 V2 dZ

du

dZDR

du
1

dZ

du
dZDR

du

� �
. (10)

Here, DZDR
(t) is an adaptable threshold (currently 0.5 dB),

and V is a one-way 3-dB antenna pattern width (u and

u are the elevation and azimuth pointing angles of the

antenna). It is evident from (10) that the gradients of

Z and ZDR should be computed prior to the estimation

of DZDR.

In full analogy, the formulas for Frhv, Fsnr, and Fpbb can

be written as

Frhv 5 exp �0.69
1� rhv

Dr
(1)
hv

" #2
8<
:

9=
;, (11)

Fsnr 5 exp �0.69
snr(Zdr)

snr

� �2( )
, and (12)

Fpbb 5 exp �0.69
a

50

� �2
� �

. (13)

In (11)–(13), Drhv
(1) 5 0.2 and snr(Zdr) 5 100.05 are thresh-

olds for rhv and the signal-to-noise ratio (snr; in linear

TABLE 2. Matrix of weights.

Class

Variable

Z ZDR rhv LKdp SD(Z) SD(VDP)

GC/AP 0.2 0.4 1.0 0.0 0.6 0.8

BS 0.4 0.6 1.0 0.0 0.8 0.8

DS 1.0 0.8 0.6 0.0 0.2 0.2

WS 0.6 0.8 1.0 0.0 0.2 0.2

CR 1.0 0.6 0.4 0.5 0.2 0.2

GR 0.8 1.0 0.4 0.0 0.2 0.2

BD 0.8 1.0 0.6 0.0 0.2 0.2

RA 1.0 0.8 0.6 0.0 0.2 0.2

HR 1.0 0.8 0.6 1.0 0.2 0.2

RH 1.0 0.8 0.6 1.0 0.2 0.2
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scale), and a is a degree of beam blockage (in %) that is

estimated from the digital elevation map for a given azi-

muth and elevation.

Following a similar line of reasoning, we write for-

mulas for all six components of the confidence vector:

QZ 5 exp �0.69
FDP

F
(Z)
DP

" #2

1
snr(Z)

snr

� �2
1

a

50

� �2

8<
:

9=
;

0
@

1
A,

(14)

QSDZ 5 exp �0.69
snr(SDZ)

snr

� �2
( ) !

, and (18)

QSDF 5 exp �0.69
snr(Kdp)

snr

� �2
( ) !

. (19)

In Eqs. (16)–(17), the parameters j and DFDP related

to the nonuniform beam filling are specified as in

Ryzhkov (2007):

j 5 exp �1.37 10�5V2 dFDP

du

� �2

1
dFDP

du

� �2
" #( )

(20)

and

DFDP 5 0.02 V2 dFDP

du

dZH

du
1

dFDP

du
dZH

du

� �
. (21)

In the areas of nonmeteorological echo, high local

gradients of Z, ZDR, and FDP may produce very large

NBF-related biases DZDR, DFDP, and low value of

j according to Eqs. (10), (21), and (20). In addition,

low net values of rhv cause significant decreases in the

quality factors QZDR, Qrhv, and QKDP due to the term

x 5
1� rhv

Dr
(1)
hv

" #2

. (22)

Observations suggest that rhv and ZDR are quite effec-

tive in recognizing nonmeteorological echo (hence, the

weights for these are relatively high in Table 2) for

which intrinsic rhv is low; therefore, the decrease of

their classification value (due to lowering QZDR and

Qrhv) is counterproductive. To mitigate the negative

influence of these factors on the classification quality of

nonmeteorological echo, it is recommended to enhance

QZDR and Qrhv using the following settings:

DZDR 5 0, j 5 1 , x 5 0 if rhv , 0.8. (23)

The biases of Z and ZDR due to radar miscalibration

can be estimated from data analysis using consistency

between Z, ZDR, and KDP in rain and utilizing mea-

surements in light rain or dry aggregated snow, which

may serve as natural calibrators for ZDR (e.g., Ryzhkov

et al. 2005a). However, such an assessment is not always

possible. For example, the use of KDP for the consis-

tency check requires rain of relatively high intensity.

For this reason radar miscalibration errors are not cur-

rently involved in the estimation of the factors QZ and

QZDR, although all possible measures are undertaken to

minimize system biases in Z and ZDR.

4. Class designation

Because the membership functions of some classes of

liquid and frozen hydrometeors (such as rain and dry

snow) heavily overlap, the classification of these ele-

ments can be significantly improved by taking into ac-

count the location of the radar resolution volume with

respect to the melting layer. The top and bottom of the

melting layer can be determined from an upper-air

sounding, numerical model output, or from polarimetric

data (if echoes cover a sufficiently large area). The

melting layer detection algorithm (MLDA) developed

at NSSL determines the top and bottom of the melting

QZDR 5 exp �0.69
FDP

F
(Zdr)
DP

" #2

1
DZDR

DZ
(t)
DR

" #2

1
1� rhv

Dr
(1)
hv

" #2

1
snr(Zdr)

snr

� �2
1

a

50

� �2

8<
:

9=
;

0
@

1
A, (15)

Qrhv 5 exp �0.69
1� j

Dr
(2)
hv

" #2

1
1� rhv

Dr
(1)
hv

" #2

1
snr(rhv)

snr

� �28<
:

9=
;

0
@

1
A, (16)

QKDP 5 exp �0.69
DFDP

DF
(t)
DP

" #2

1
1� rhv

Dr
(1)
hv

" #2

1
snr(Kdp)

snr

� �28<
:

9=
;

0
@

1
A, (17)
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layer as a function of the azimuth for any given radar

scan (Giangrande et al. 2008). The MLDA identifies

radar ranges where rhv is between 0.90 and 0.97 for el-

evation angles between 48 and 108. If the maxima of

Z between 30 and 47 dBZ and ZDR between 0.8 dB

and 2.5 dB are observed in a 500-m-thick horizontal

layer just above the height of the range gate where

0.90 , rhv , 0.97, then this range and its corresponding

height identify the melting layer. This routine is re-

peated for each azimuth and the resulting cluster of

melting layer points is used to determine the top (Ht)

and bottom (Hb) heights of the melting layer as func-

tions of the azimuth.

Checking the consistency of the designated class with

the location of the melting layer is an important part of

the classification routine. The geometry of the radar

beam with respect to the melting layer is illustrated in

Fig. 2; the slant ranges Rb and Rt correspond to geo-

metrical projections of the melting layer onto the cone

generated by the beam center at the lowest tilt. In fact,

mixed-phase hydrometeors partially fill the radar reso-

lution volume in a much broader interval of ranges

(Rbb, Rtt) due to the antenna beamwidth. Once the

boundaries of the melting layer are determined, the

fuzzy logic aggregation (3) and classification procedure

are applied with two restrictions: snow is not allowed

below the ML bottom and pure rain is prohibited above

the ML top except for the big-drops category; these are

commonly transported by convective updrafts well above

the environmental freezing level.

The following subsets of classes are allowed within

five slant range intervals:

0 , R , Rbb—GC/AP, BS, BD, RA, HR, RH;

Rbb , R , Rb—GC/AP, BS, WS, GR, BD, RA, HR, RH;

Rb , R , Rt—GC/AP, BS, DS, WS, GR, BD, RH;

Rt , R , Rtt—GC/AP, BS, DS, WS, CR, GR, BD, RH;

and

R . Rtt—DS, CR, GR, RH.

(24)

Additional routines in the HCA include separation of

convective and stratiform echoes, checks if the results

are reasonable, and despeckling. Identifying convective

and stratiform parts of a radar echo helps to better

discriminate between wet snow and melting graupel

within the melting layer. The algorithm for identifying

convective echoes is similar to the method developed by

Zhang et al. (2008). It is based on detecting high values

in the observed vertical profiles of reflectivity and the

top of the melting layer (typically coincident with the

08C wet-bulb temperature height) derived from polari-

metric variables. Polarimetric data with rhv less than 0.85

are considered to be contaminated by nonmeteorological

scatterers (Giangrande and Ryzhkov 2008) and are tag-

ged prior to the convective identification procedure. To

discriminate between convective and stratiform echoes,

the radar reflectivity at a given slant range and azimuth is

examined for all elevations. This slant range and azimuth

are identified as belonging to the convective echo if the

maximum reflectivity in the vertical column is higher

than 45 dBZ or Z is higher than 30 dBZ at altitudes of

1.6 km or higher above the melting layer top. If the echo

is classified as convective, then dry snow and wet snow

(DS and WS) are not allowed within a whole vertical

column. Conversely, the ‘‘convective’’ hydrometeor types

such as BD, GR, and RH are excluded in the stratiform

case.

To check if the results are reasonable, a set of ‘‘hard

thresholds’’ is used, thereby reducing the number of

clearly wrong class designations; for example, hail is

considered to be misclassified if Z , 40 dBZ. In such

cases the algorithm accepts the class with the next

highest aggregation value. The set of such checks or

rules is presented in Table 3. These checks are based on

physical models and the results of observations and are

FIG. 2. Geometry of the radar beam with respect to the melting

layer. The beam axis is drawn with the thick solid line whereas the

locations of the 60.58 beam extent (3-dB beamwidth) are indicated

with the dashed curves. Dotted lines indicate slant ranges Rbb, Rb,

Rt, and Rtt, corresponding to geometrical projections of the

melting layer from the radar beam onto the base tilt. The heights

Hb and Ht represent the melting layer bottom and top heights,

respectively.
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consistent with the results in the Straka et al. (2000)

overview.

The despeckling procedure eliminates isolated inci-

dents of misclassification within fields of relatively uni-

form classes, hence producing a less noisy outcome.

5. Results of classification for the MCS case on
13 May 2005

The performance of the HCA is illustrated for

the case of an MCS that developed over northwest-

ern Oklahoma and moved eastward through central

Oklahoma on 13 May 2005. The storm was observed

by the National Oceanic and Atmospheric Adminis-

tration (NOAA)/NSSL polarimetric ‘‘proof of con-

cept’’ WSR-88D radar (KOUN hereafter). KOUN

data were collected at 15 antenna elevations (0.08,

0.438, 1.48, 2.58, 3.58, 4.58, 5.58, 6.58, 7.58, 8.78, 10.08,

12.08, 14.08, 16.78, and 19.58) with a volume update time

of about 6 min. Absolute calibration of Z was made

by checking its consistency with KDP measurements

(Ryzhkov et al. 2005a) in areas of moderate to heavy

rain with Z . 40 dBZ and via cross comparison with the

operational Oklahoma City, Oklahoma (KTLX), WSR-

88D radar, which is located about 20 km from KOUN.

Following Ryzhkov et al. (2005a), the differential re-

flectivity was calibrated using the measurements of ZDR

in dry aggregated snow slightly above the melting layer

in the stratiform part of the MCS. Future calibration on

the operational dual-polarization radar network will be

automated (at the end of each volume scan as is done

presently for reflectivity measurements). This will be

augmented by more extensive checks daily and monthly.

Similar approaches will be used for the differential re-

flectivity whereby the augmented checks will involve

comparisons with sun scans. These approaches were not

available at KOUN in May 2005. Hence, the manual and

postoperational calibrations were required.

a. Estimation of the confidence vector

Gradients of Z and ZDR, and values of rhv, SNR, and

FDP all affect the confidence vector. Figure 3 shows a

composite 0.438 elevation plan position indicator (PPI)

display of Z, ZDR, FDP, rhv, and SNR at 0646 UTC. A

decrease in rhv along the southern flank of the squall

line is notable at distances beyond 140–150 km. This is a

clear manifestation of nonuniform beam-filling effects,

which were estimated from the analysis of the vertical

and horizontal gradients of Z, ZDR, and rhv as pre-

scribed by Eqs. (10), (20), and (21). The gradients were

computed from the differences between the radar var-

iables at adjacent radials spaced by 18 in the azimuth

and the elevation. Antenna elevations of 0.438 and 1.48

were used to compute the vertical gradients. Large

vertical and azimuthal gradients of the differential

phase at longer distances along the squall line contrib-

ute significantly to the biases in rhv and FDP (Fig. 4),

with the vertical gradient of FDP being primarily re-

sponsible for the large NBF-related errors in this area.

The NBF bias in ZDR is highest within the melting layer

(Fig. 4) because vertical gradients of Z and ZDR are high

there [see Eq. (10)].

The fields of the confidence factors of Z, ZDR, KDP,

and rhv are displayed in Fig. 5. The confidence factors

QZ, QZDR, QKDP, and Qrhv were determined using

Eqs. (14)–(17), where

F
(Z)
DP 5 F

(Zdr)
DP 5 2508, DF

(t)
DP 5 108,

Dr
(1)
hv

5 0.2, Dr
(2)
hv

5 0.1, DZ
(t)
DR 5 0.5 dB,

SNR(Z) 5 SNR(Kdp) 5 0 dB, and

SNR(Zdr) 5 SNR(rhv) 5 5 dB.

(25)

The choice of threshold parameters in (25) was based on

a theoretical analysis of the measurement errors caused

by low rhv and SNR (Bringi and Chandrasekar 2001;

Melnikov and Zrni�c 2007) and NBF (Ryzhkov 2007).

As can be deduced from Eqs. (14)–(17), the confi-

dence factors of the three polarimetric variables are

mainly affected by NBF and the magnitude of rhv, which

determines the noisiness of the polarimetric measure-

ments. For this reason, the largest drop in the confi-

dence factors for ZDR, KDP, and rhv is observed in the

areas of the large gradients of FDP (west-southwest

from the radar) and within the melting layer where in-

trinsic values of the cross-correlation coefficients are

low. All confidence factors decrease at the periphery of

the radar echo due to a reduction in the signal-to-noise

ratio. The radar reflectivity is less affected by this re-

duction compared to polarimetric variables and there-

fore is the most reliable classification parameter in the

areas of weak weather radar echo.

TABLE 3. Empirical hard thresholds used to suppress apparently

wrong designations. Function f2(Z) is determined by Eq. (4).

Variables Thresholds Suppressed class

V .1 m s21 GC/AP

rhv .0.97 BS

ZDR .2 dB DS

Z ,20 dBZ WS

ZDR ,0 dB WS

Z .40 dBZ CR

Z ,10 Z or .60 dBZ GR

ZDR ,f2(Z) – 0.3 BD

Z .50 dBZ RA

Z ,30 dBZ HR

Z ,40 dBZ RH
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FIG. 3. Composite plot of (top left) Z, (top right) ZDR,

(middle left) FDP, (middle right) rhv, and (bottom left)

SNR at a 0.438 elevation angle measured by KOUN at

0646 UTC 13 May 2005. Contours represent slant ranges

Rbb, Rb, Rt, and Rtt (associated with the melting layer) as

functions of the azimuth.
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In the region of clear-air echo (SE quadrant), the con-

fidence factors for Z and KDP are almost identical because

both are primarily determined by SNR as condition (23)

is applied. The confidence factors for ZDR and rhv are

alike in that region for the same reason.

b. Melting-layer detection

Once the confidence factors are determined and ag-

gregation values are computed, the top and bottom of the

melting layer are estimated at each azimuth to constrain

the classes into the permissible subsets listed in (24).

Figure 6 displays the melting-layer polarimetric sig-

natures at an elevation of 4.58 at 1016 UTC. Note that

both the ZDR and rhv signatures of the melting layer are

well depicted in the convective part of the storm in the

SE sector where a conventional radar reflectivity factor

shows only a hint of the bright band. The outcome of the

routine for estimating the melting-layer top and bottom

heights Ht and Hb suggested by Giangrande et al. (2008)

is illustrated in Fig. 7a. In each azimuthal direction, a

histogram of the heights of the radar resolution volumes

belonging to the melting layer (i.e., ML points displayed

as black dots in Fig. 7a) is examined and its 20% and

80% percentiles are utilized to define Ht and Hb. The

corresponding contours of Rbb, Rb, Rt, and Rtt deter-

mined in Fig. 2 are overlaid in Figs. 3–5.

According to Giangrande et al. (2008), the top of the

melting layer derived from polarimetric measurements

approximates the height of the 08 wet-bulb temperature

with an RMS error of about 0.2 km in most cases.

FIG. 4. Composite plot of (top left) ZDR bias, (top right)

FDP bias, and (bottom left) rhv multiplicative factor (z) at a

0.438 elevation angle at 0646 UTC 13 May 2005. Contours

indicate slant ranges Rbb, Rb, Rt, and Rtt (associated with the

melting layer) as functions of the azimuth.
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Comparison with sounding data obtained near the radar

location at 1200 UTC in clear atmosphere after the storm

passed over the radar (Fig. 7b) indicates that the mean

ML top (averaged over all azimuths) is at the tempera-

ture of about 28C, or 300 m below the 08C isotherm. Such

a discrepancy is attributed to relatively low humidity

(70%–80%) at the 08C isotherm level; hence, the wet-

bulb temperature is still below zero at this height. In fact,

the difference between the measured temperature and

the wet-bulb temperature is about 28C. Melting starts

where wet-bulb temperature exceeds 08C (dash–dot line

in Fig. 7b).

c. Classification results

HCA output at the base elevation of 0.438 is displayed

in Fig. 8 for 0646 and 0934 UTC. Although it is not

possible to verify the HCA output by comparisons with

in situ measurements, the results of the classification in

both panels in Fig. 8 fit the accepted microphysical

conceptual models of trailing stratiform MCSs (Houze

et al. 1989). At 0646 UTC, biological scatterers and

ground clutter (two shades of blue) are identified ahead

of the squall line. The leading edge of the squall line is

marked by a thin line of big drops associated with size

FIG. 5. Composite plot of the confidence factors of (top left) Z, (top right) ZDR, (bottom left) KDP, and (bottom right) rhv at a 0.438

elevation angle at 0646 UTC 13 May 2005. The slant ranges Rbb, Rb, Rt, and Rtt (associated with the melting layer) as functions of azimuth

are overlaid on the image as contours.
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sorting caused by updrafts and wind shear (Wakimoto

and Bringi 1988; Kumjian and Ryzhkov 2008). It is fol-

lowed by heavy rain (dark shade of red) and occasional

regions of hail (pink). A gradual transition from rain to

wet snow (green), dry snow (blue), and crystals (dark

shade of green) is clear in the stratiform part of MCS once

the radar beam approaches and overshoots the melting

level. Elevated areas of graupel (yellow) are evident in

the convective part of the storm at its southern flank.

Three hours later, at 0934 UTC, convective updrafts

persist along the leading edge of the squall line. Ahead

of the convective core of precipitation is the edge of the

gust front, which, according to the algorithm, contains

biological scatterers. Graupel at heights over 2 km

above ground and hail are also identified at the southern

flank of the storm, whereas the transition from rain to wet

snow, dry snow, and crystals is preserved at its northern

flank. Notable is the appearance of the ground clutter

behind the storm, which is caused by superrefraction

(anomalous propagation) in the post-MCS environment.

To evaluate the impacts of newly added features on

the performance of HCA, we compare the classification

results obtained with the latest version of the classifi-

cation algorithm in Fig. 8 with the outputs of two

aborted versions of HCA (Fig. 9). In both simplified

versions, all elements of the matrix of weights W and the

confidence vector Q are set to 1, antenna beam broad-

ening is not taken into account, and no vertical conti-

nuity check is performed to distinguish between the

convective and stratiform parts of the storm. The top

FIG. 6. Composite plot of (top left) Z, (top right) ZDR, and

(bottom left) rhv at the 4.58-elevation angle at 1016 UTC 13

May 2005.
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panels in Fig. 9 illustrate the results of the classification

if no information about the melting layer is taken into

consideration. This information was utilized to make

the HCA outputs shown in the bottom panels of Fig. 9.

Note that the membership functions P(i)(Vj) were the

same for all three versions of HCA.

There are similarities and significant differences be-

tween the classification products in Figs. 8 and 9. All

three versions of HCA reliably distinguish between

meteorological and nonmeteorological radar echoes

and identify heavy rain and hail in the same areas.

However, the designations of other hydrometeor classes

are vastly different. Numerous false designations of

frozen particles (such as dry snow or crystals) below the

freezing level are visible in the HCA product if the in-

formation about melting layer is ignored (top panels in

Fig. 9). This is due to the fact that the membership

functions corresponding to some categories of liquid

and frozen hydrometeors heavily overlap (see Table 1).

Incorporating information about the melting layer helps

to mitigate this deficiency, but ignoring antenna beam

broadening results in artificial circular boundaries and

in underestimating the impact of the wet snow contri-

bution on the radar polarimetric variables. The areas of

rain and snow in Fig. 8 look more uniform and contain

fewer speckles compared to the corresponding areas in

Fig. 9 due to the application of weights, confidence fac-

tors, vertical continuity checks, and the hard thresholds

from Table 3. Overall, the comparison of Figs. 8 and 9

shows that supplementary routines and checks added to

the ‘‘core fuzzy logic procedure’’ with the same mem-

bership functions have a significant impact on the results

of the classification.

Although the classification results presented in Fig. 8

seem quite reasonable, some deficiencies are also no-

ticeable. These include apparent misclassifications at the

two NE azimuthal directions (right panel in Fig. 8) where

partial beam blockage occurs due to two towers, the

impact of which cannot be accounted for using the digital

elevation map, that is, utilizing factor a in Eqs. (14) and

(15). Another concern is the appearance of rain within

the melting layer and the artificial-looking boundary

along Rb at the northern flank of the MCS in the left

panel in Fig. 8. These and other potential shortcomings

will be addressed in future enhancements to the HCA.

Classification is performed at each antenna elevation

and two vertical cross sections of the results constructed

from the series of conical scans are in Figs. 10 and 11 . In

Fig. 10, the bright band is identified as wet snow (light

green) and separates dry snow and rain in the stratiform

part of the storm. In the storm’s convective part, graupel

is shown in yellow and hail in pink. Hail is aloft (two

small areas) and likely melts completely before reaching

the ground. Ice crystals abound at more than 2 km

above ground while dry snow is prevalent at over 3.1 km;

biological scatterers are recognized in the boundary layer

ahead of the storm at distances beyond 95 km from the

radar.

In the more intense part of the storm illustrated in

Fig. 11, the bulk of the hydrometeors identified as

graupel and large drops fill a larger volume than in the

less intense part (Fig. 10). A vertical ZDR column, which

is clearly visible between 40 and 50 km and collocated

with a region of relatively low reflectivity, is associated

with big drops that are suspended in a convective up-

draft. Again, two vertically elongated regions in the

FIG. 7. Results of (a) the polarimetric melting-layer detection

for the volume scan illustrated in Fig. 6 and (b) the sounding. In

(a), ML top and bottom heights AGL are displayed with thick solid

lines. In (b), the temperature (thin solid line), dewpoint (dotted

line), and wet-bulb temperature (dashed–dotted line) are plotted

from sounding data launched near KOUN at 1200 UTC 13 May

2005; the mean ML top and bottom heights designated from the

radar are superimposed with thick solid lines and the 08C line is

plotted with a vertical dashed line.
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height interval between 1 and 3.5 km are recognized as a

hail–rain mixture (pink).

These examples illustrate how HCA provides new,

important information for operational meteorologists.

First of all, it clearly delineates meteorological and non-

meteorological echoes including the one caused by the

anomalous propagation in the areas of cold thunderstorm

outflow (right panel in Fig. 8). It allows for monitoring

of the height and depth of the melting layer and their

changes due to frontal passages. Indeed, the comparison

of the dotted circular curves in the left and right panels

of Fig. 8 indicates that the melting layer descends in the

course of 3 h; that is, the radii of the curves become

smaller. This corresponds to the decrease of the melting-

layer height by more than 0.6 km. Detection of the

melting layer, which often descends to the ground dur-

ing the cold season, is crucial for delineating rain and

snow in winter storms (Ryzhkov and Zrni�c 1998).

The big-drop signature is especially helpful for as-

sessing the stage of convective development. Indeed,

‘‘ZDR columns,’’ which may be identified with the HCA

as big drops above the freezing level, signify updrafts

FIG. 8. Fields of (top) radar reflectivity and (bottom) classification results displayed as a PPI at the 0.438 elevation angle at (left) 0646

and (right) 0934 UTC on 13 May 2005. Contours indicate slant ranges Rbb, Rb, Rt, and Rtt (associated with the melting layer) as functions

of the azimuth.
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and convective initiation. The areas of big drops at the

leading edge of the squall line (left panel in Fig. 8)

manifest three microphysical processes: differential sed-

imentation at the onset of precipitation (larger raindrops

fall faster and reach the surface ahead of smaller ones),

unidirectional wind shear, and size sorting within an

updraft. In the case of a supercell storm, the big-drop

signature in the southern part of the forward-flank

downdraft signifies veering of the wind and enhanced

storm-relative helicity (Kumjian and Ryzhkov 2008). It

should be noted that melting graupel–hail in the storm

downdrafts also may produce very high ZDR, which is

usually associated with high Z and is not classified by

our scheme as big drops.

The graupel and rain–hail categories help to pinpoint

locations of possible hail development and help

to monitor how hail descends to the ground, as seen in

Figs. 10 and 11. In addition to monitoring descending

hail, HCA can also help determine if hail melts prior to

reaching the ground by examining the lowest HCA tilt.

If there is no hail on the lowest tilt below the melting

layer, then no hail should be reaching the ground.

FIG. 9. As in Fig. 8, but here the classification was performed with two aborted versions of HCA: (all panels) beam broadening is not

taken into account, and there is no vertical continuity check W5 1, Q5 1; (top) melting layer information is not used; and (bottom)

melting layer information is utilized.
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In addition to the information provided for operational

forecasters, the classification product greatly benefits

quantitative precipitation estimation because it reveals

the appropriate rainfall relation that should be applied

to the observed hydrometeor class (Giangrande and

Ryzhkov 2008).

6. Summary and conclusions

A proposed methodology for classifying hydrome-

teors using dual-polarization WSR-88D radars is pre-

sented. The algorithm builds on several previous ver-

sions and has been accepted for the first software release

on the upgraded network. It enables discrimination

between 10 different classes (rain, heavy rain, rain/

hail, big drop, wet snow, dry snow, graupel, crystals,

biological scatterers, and ground clutter); hence, it can

be used to discriminate between hydrometeor types

in both warm-season and cold-season precipitation

systems. The main goal of the improved version is to

provide users with a product that identifies important

precipitation classes (hail, heavy rain, attributes of the

FIG. 10. Composite plot of (top left) Z, (top right) ZDR, (bottom left) rhv, and (bottom right) the results of hydrometeor classification in

the RHI cross section at 1013 UTC 13 May 2005. The azimuth angle is 1568. Dotted lines indicate slant ranges Rbb, Rb, Rt, and Rtt

(associated with the melting layer) at the azimuth.
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melting layer) while minimizing the occurrence of ob-

vious misclassifications. Novel features have been in-

troduced to meet this goal.

The first new feature introduced is the confidence

vector, which quantifies the quality of each radar variable

estimate. Nonuniform beam filling, attenuation, statisti-

cal errors, partial beam blockage, and noise all affect the

quality of the classification scheme. The impacts of all of

these factors on radar measurements are gauged using

Gaussian functions as additional weights in the fuzzy

logic scheme. It is possible to use the confidence factor

statistically by assigning a threshold that, if exceeded,

indicates that the classification results are acceptable; this

nonetheless has not been done in the present study.

Next, the algorithm applies a matrix of weights so that

each pair of a radar variable (six) and class (ten) gets a

unique weight. The weights are chosen to favor a class

that the value of the variable can identify particularly

well. In this manner the classification potency of a var-

iable to characterize a particular hydrometeor class is

exploited.

The algorithm also determines the top and bottom

heights of the melting layer for every azimuthal angle

about the radar site. It then combines the principles of

FIG. 11. As in Fig. 10, except the data are taken at 0646 UTC 13 May 2005 and the azimuth angle is 2528.
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class designation relative to the location of the melting

layer with the fuzzy logic approach, taking into account

the broadening of the radar beam at longer distances. This

can make the separation of liquid and frozen hydrome-

teors much more realistic. As a consequence, it is possible

to provide a higher probability of correct classification and

reduce the occurrence of apparently erroneous class

designations in the field of classification results.

Finally, vertical continuity checks are applied to bet-

ter distinguish between convective parts of the storm

associated with dry–wet graupel aloft and its stratiform

region where rain originates from dry–wet snow at

higher levels. This improves the level of discrimination

between graupel and snow.

The hydrometeor classification algorithm was applied

to the mesoscale convective system observed with the

KOUN radar on 13 May 2005. The results of the classi-

fication effectively show heavy rain (occasionally mixed

with hail) and graupel in the convective part of the MCS,

big drops along the leading edge of the squall line, and a

gradual transition from rain to wet snow, dry snow, and

crystals in its trailing stratiform region as the height of the

radar sampling volume increases with distance. Ground

clutter (including that due to anomalous propagation) and

biological scatterers ahead of the storm are also reliably

recognized.

Classification output obtained from polarimetric ra-

dar can be very helpful in the forecast process. It pro-

vides operational meteorologists information about

the origin of a radar echo, the height and depth of the

melting layer, the stage of convective development,

the localization of vertical flows (updrafts–downdrafts),

strong wind shear, and rotation, as well as the capability

for monitoring the development and location of hail.

Although the suggested algorithm demonstrates agree-

ment with conceptual models of MCSs and provides

reasonable classification results for the MCS case on

13 May 2005 (and similar warm-season cases not de-

scribed in the paper), there is room for improvement.

Application to a wider range of weather events, in-

cluding cold-season storms with low melting layers or

the lack of a melting layer, will be examined in future

studies.
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